--- license: apache-2.0 language: - fr - it - de - es - en inference: false --- # Model Card for Mixtral-Fusion-4x7B-Instruct-v0.1 This model is an experimental model created by merging [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co./mistralai/Mixtral-8x7B-Instruct-v0.1) experts. # How we merged experts We simply take the average of every two experts.weight. The same goes for gate.weight. # How To Convert use colab cpu-high-memory. [convert_mixtral_8x7b_to_4x7b.ipynb](https://huggingface.co./mmnga/Mixtral-Fusion-4x7B-Instruct-v0.1/blob/main/notebook/convert_mixtral_8x7b_to_4x7b.ipynb) # Usage ~~~python pip install git+https://github.com/huggingface/transformers --upgrade pip install torch accelerate bitsandbytes flash_attn ~~~ ~~~python from transformers import AutoTokenizer, AutoModelForCausalLM, MixtralForCausalLM import torch model_name_or_path = "mmnga/Mixtral-Fusion-4x7B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = MixtralForCausalLM.from_pretrained(model_name_or_path, load_in_8bit=True) # set num_experts_per_tok 1 or 2 ? model.config.num_experts_per_tok = 1 # message messages = [ {"role": "user", "content": "Tell me what's for dinner tonight."}, ] with torch.no_grad(): token_ids = tokenizer.apply_chat_template(messages, return_tensors="pt") output_ids = model.generate( token_ids.to(model.device), temperature=0.5, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=128, repetition_penalty=1.5 ) output = tokenizer.decode(output_ids[0][token_ids.size(1) :]) print(output) ~~~