|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""EXAONE model configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAONE_PRETRAINED_CONFIG_ARCHIVE_MAP = {} |
|
|
|
|
|
class ExaoneConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`ExaoneModel`]. It is used to |
|
instantiate a EXAONE model according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the EXAONE-3.0-7.8B-Instruct [LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct](https://huggingface.co./LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct) |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model |
|
outputs. Read the documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 102400): |
|
Vocabulary size of the EXAONE model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`ExaoneModel`]. Vocabulary size of the model. |
|
Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of |
|
[`ExaoneModel`]. |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
hidden_size (`int`, *optional*, defaults to 2048): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
num_key_value_heads (`int`, *optional*): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to |
|
`num_attention_heads`. |
|
intermediate_size (`int`, *optional*, defaults to `hidden_size * 4`): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
activation_function (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
rope_scaling (`Dict`, *optional*): |
|
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type |
|
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value |
|
accordingly. |
|
Expected contents: |
|
`rope_type` (`str`): |
|
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', |
|
'llama3'], with 'default' being the original RoPE implementation. |
|
`factor` (`float`, *optional*): |
|
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In |
|
most scaling types, a `factor` of x will enable the model to handle sequences of length x * |
|
original maximum pre-trained length. |
|
`original_max_position_embeddings` (`int`, *optional*): |
|
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during |
|
pretraining. |
|
`attention_factor` (`float`, *optional*): |
|
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention |
|
computation. If unspecified, it defaults to value recommended by the implementation, using the |
|
`factor` field to infer the suggested value. |
|
`beta_fast` (`float`, *optional*): |
|
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear |
|
ramp function. If unspecified, it defaults to 32. |
|
`beta_slow` (`float`, *optional*): |
|
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear |
|
ramp function. If unspecified, it defaults to 1. |
|
`short_factor` (`List[float]`, *optional*): |
|
Only used with 'longrope'. The scaling factor to be applied to short contexts (< |
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden |
|
size divided by the number of attention heads divided by 2 |
|
`long_factor` (`List[float]`, *optional*): |
|
Only used with 'longrope'. The scaling factor to be applied to long contexts (< |
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden |
|
size divided by the number of attention heads divided by 2 |
|
`low_freq_factor` (`float`, *optional*): |
|
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE |
|
`high_freq_factor` (`float`, *optional*): |
|
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE |
|
embed_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): |
|
The epsilon used by the layer normalization layers. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if ``config.is_decoder=True``. |
|
bos_token_id (`int`, *optional*, defaults to 0): |
|
Beginning of stream token id. |
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
End of stream token id. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import EXAONEModel, ExaoneConfig |
|
|
|
>>> # Initializing a EXAONE configuration |
|
>>> configuration = ExaoneConfig() |
|
|
|
>>> # Initializing a model from configuration |
|
>>> model = EXAONEModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "exaone" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = {"num_hidden_layers": "num_layers"} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=102400, |
|
max_position_embeddings=2048, |
|
hidden_size=2048, |
|
num_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=None, |
|
intermediate_size=None, |
|
activation_function="silu", |
|
rope_theta=10000.0, |
|
rope_scaling=None, |
|
embed_dropout=0.0, |
|
attention_dropout=0.0, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
use_cache=True, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.num_layers = num_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_layers = num_layers |
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
self.num_key_value_heads = num_key_value_heads |
|
if intermediate_size: |
|
self.intermediate_size = intermediate_size |
|
else: |
|
self.intermediate_size = hidden_size * 4 |
|
self.activation_function = activation_function |
|
self.embed_dropout = embed_dropout |
|
self.attention_dropout = attention_dropout |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
|
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
|
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
|