File size: 6,329 Bytes
78af76d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: audeering/wav2vec2-large-robust-6-ft-age-gender
tags:
- generated_from_trainer
datasets:
- arrow
metrics:
- accuracy
model-index:
- name: wav2vec2-age-gender-balancedset
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-age-gender-balancedset

This model is a fine-tuned version of [audeering/wav2vec2-large-robust-6-ft-age-gender](https://huggingface.co./audeering/wav2vec2-large-robust-6-ft-age-gender) on the arrow dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4630
- Accuracy: 0.7529
- F1 Score: 0.7799
- Mse: 0.7442
- Mae: 0.3779
- Mae^m: 0.3325

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 9
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 18
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy | F1 Score | Mse    | Mae    | Mae^m  |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:--------:|:------:|:------:|:------:|
| 1.7071        | 0.6557  | 100  | 1.6599          | 0.3120   | 0.2225   | 3.2857 | 1.2857 | 1.2279 |
| 1.28          | 1.3115  | 200  | 1.2170          | 0.5102   | 0.3996   | 1.3032 | 0.7201 | 0.7433 |
| 1.2241        | 1.9672  | 300  | 1.1266          | 0.5190   | 0.4383   | 1.3703 | 0.7172 | 0.8739 |
| 1.0071        | 2.6230  | 400  | 1.1116          | 0.5743   | 0.5019   | 1.1370 | 0.6006 | 0.7637 |
| 0.8658        | 3.2787  | 500  | 1.1158          | 0.6414   | 0.5407   | 1.4548 | 0.6035 | 0.6665 |
| 0.6653        | 3.9344  | 600  | 0.9547          | 0.6764   | 0.6021   | 0.8863 | 0.4723 | 0.5315 |
| 0.7106        | 4.5902  | 700  | 1.0466          | 0.6706   | 0.5908   | 0.9038 | 0.4840 | 0.6695 |
| 0.5326        | 5.2459  | 800  | 1.2520          | 0.6560   | 0.6961   | 0.7813 | 0.4723 | 0.4067 |
| 0.4258        | 5.9016  | 900  | 1.1431          | 0.6939   | 0.6080   | 0.8601 | 0.4519 | 0.5134 |
| 0.452         | 6.5574  | 1000 | 1.0243          | 0.7114   | 0.7066   | 0.8921 | 0.4431 | 0.3818 |
| 0.2399        | 7.2131  | 1100 | 1.2856          | 0.7114   | 0.7095   | 0.7901 | 0.4227 | 0.3683 |
| 0.1564        | 7.8689  | 1200 | 1.5014          | 0.6676   | 0.7050   | 1.1924 | 0.5394 | 0.4640 |
| 0.3962        | 8.5246  | 1300 | 1.3338          | 0.7230   | 0.7545   | 0.7551 | 0.4111 | 0.3599 |
| 0.1475        | 9.1803  | 1400 | 1.7256          | 0.6880   | 0.7230   | 0.8688 | 0.4665 | 0.4102 |
| 0.2757        | 9.8361  | 1500 | 1.6456          | 0.7085   | 0.7053   | 0.6501 | 0.3994 | 0.3469 |
| 0.1245        | 10.4918 | 1600 | 1.9034          | 0.7055   | 0.7464   | 0.8980 | 0.4490 | 0.3869 |
| 0.0902        | 11.1475 | 1700 | 1.8943          | 0.7289   | 0.7195   | 0.8163 | 0.4140 | 0.3626 |
| 0.1188        | 11.8033 | 1800 | 2.0529          | 0.7376   | 0.7657   | 0.7172 | 0.3848 | 0.3405 |
| 0.0573        | 12.4590 | 1900 | 2.0553          | 0.7172   | 0.7512   | 0.8484 | 0.4286 | 0.3666 |
| 0.1123        | 13.1148 | 2000 | 2.1915          | 0.7172   | 0.7538   | 0.7405 | 0.4082 | 0.3548 |
| 0.1463        | 13.7705 | 2100 | 2.0914          | 0.7259   | 0.7600   | 0.6589 | 0.3790 | 0.3272 |
| 0.3641        | 14.4262 | 2200 | 2.5501          | 0.6997   | 0.7388   | 0.8921 | 0.4490 | 0.3839 |
| 0.0495        | 15.0820 | 2300 | 2.5900          | 0.7026   | 0.6986   | 0.9038 | 0.4606 | 0.3989 |
| 0.0177        | 15.7377 | 2400 | 2.2336          | 0.7201   | 0.7564   | 0.8921 | 0.4373 | 0.3757 |
| 0.0291        | 16.3934 | 2500 | 2.6949          | 0.7347   | 0.7692   | 0.7405 | 0.3907 | 0.3391 |
| 0.0799        | 17.0492 | 2600 | 2.5497          | 0.7201   | 0.7479   | 0.7172 | 0.4023 | 0.3496 |
| 0.0982        | 17.7049 | 2700 | 2.4087          | 0.7464   | 0.7771   | 0.6822 | 0.3732 | 0.3203 |
| 0.072         | 18.3607 | 2800 | 2.2699          | 0.7289   | 0.7658   | 0.7172 | 0.3965 | 0.3402 |
| 0.1227        | 19.0164 | 2900 | 2.3906          | 0.7405   | 0.7758   | 0.6706 | 0.3732 | 0.3188 |
| 0.0075        | 19.6721 | 3000 | 2.3322          | 0.7376   | 0.7717   | 0.6472 | 0.3732 | 0.3210 |
| 0.0019        | 20.3279 | 3100 | 2.4514          | 0.7434   | 0.7779   | 0.6414 | 0.3673 | 0.3133 |
| 0.0295        | 20.9836 | 3200 | 2.4432          | 0.7493   | 0.7813   | 0.6735 | 0.3703 | 0.3170 |
| 0.0012        | 21.6393 | 3300 | 2.4851          | 0.7522   | 0.7859   | 0.5831 | 0.3440 | 0.2955 |
| 0.02          | 22.2951 | 3400 | 2.9030          | 0.7259   | 0.7609   | 0.7347 | 0.3965 | 0.3403 |
| 0.0341        | 22.9508 | 3500 | 2.6862          | 0.7347   | 0.7690   | 0.7464 | 0.3965 | 0.3412 |
| 0.0136        | 23.6066 | 3600 | 2.6282          | 0.7347   | 0.7685   | 0.7318 | 0.3936 | 0.3415 |
| 0.0252        | 24.2623 | 3700 | 2.7268          | 0.7376   | 0.7729   | 0.6297 | 0.3673 | 0.3129 |
| 0.0403        | 24.9180 | 3800 | 2.5494          | 0.7434   | 0.7753   | 0.6676 | 0.3703 | 0.3213 |
| 0.0013        | 25.5738 | 3900 | 2.4882          | 0.7580   | 0.7890   | 0.6735 | 0.3586 | 0.3083 |
| 0.0113        | 26.2295 | 4000 | 2.5213          | 0.7638   | 0.7937   | 0.5627 | 0.3294 | 0.2781 |
| 0.0371        | 26.8852 | 4100 | 2.6017          | 0.7638   | 0.7962   | 0.5394 | 0.3294 | 0.2785 |
| 0.0014        | 27.5410 | 4200 | 2.5145          | 0.7755   | 0.8044   | 0.5015 | 0.3090 | 0.2616 |
| 0.0107        | 28.1967 | 4300 | 2.4742          | 0.7726   | 0.8017   | 0.5131 | 0.3149 | 0.2717 |
| 0.0002        | 28.8525 | 4400 | 2.4811          | 0.7609   | 0.7915   | 0.5335 | 0.3294 | 0.2830 |
| 0.0001        | 29.5082 | 4500 | 2.4911          | 0.7609   | 0.7921   | 0.5481 | 0.3324 | 0.2842 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1