File size: 1,660 Bytes
f520375 0301a30 f520375 0301a30 f520375 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
library_name: transformers
license: gemma
base_model: google/gemma-2-9b-it
tags:
- llama-factory
- full
- trl
- dpo
- llama-factory
- full
- generated_from_trainer
model-index:
- name: gemma-simpo-reproduction
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma-simpo-reproduction
This model is a fine-tuned version of [google/gemma-2-9b-it](https://huggingface.co./google/gemma-2-9b-it) on the mlfoundations-dev/gemma2-ultrafeedback-armorm dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0558
- Rewards/chosen: -17.0597
- Rewards/rejected: -21.9498
- Rewards/accuracies: 0.7584
- Rewards/margins: 4.8901
- Logps/rejected: -2.1950
- Logps/chosen: -1.7060
- Logits/rejected: -18.1137
- Logits/chosen: -18.2041
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-07
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
### Training results
### Framework versions
- Transformers 4.45.2
- Pytorch 2.2.0+cu121
- Datasets 3.0.0
- Tokenizers 0.20.1
|