File size: 1,660 Bytes
f520375
 
 
 
 
0301a30
 
f520375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0301a30
 
 
 
 
 
 
 
 
 
 
f520375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
library_name: transformers
license: gemma
base_model: google/gemma-2-9b-it
tags:
- llama-factory
- full
- trl
- dpo
- llama-factory
- full
- generated_from_trainer
model-index:
- name: gemma-simpo-reproduction
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gemma-simpo-reproduction

This model is a fine-tuned version of [google/gemma-2-9b-it](https://huggingface.co./google/gemma-2-9b-it) on the mlfoundations-dev/gemma2-ultrafeedback-armorm dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0558
- Rewards/chosen: -17.0597
- Rewards/rejected: -21.9498
- Rewards/accuracies: 0.7584
- Rewards/margins: 4.8901
- Logps/rejected: -2.1950
- Logps/chosen: -1.7060
- Logits/rejected: -18.1137
- Logits/chosen: -18.2041

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-07
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0

### Training results



### Framework versions

- Transformers 4.45.2
- Pytorch 2.2.0+cu121
- Datasets 3.0.0
- Tokenizers 0.20.1