--- library_name: mlc-llm base_model: HuggingFaceTB/SmolLM2-1.7B-Instruct tags: - mlc-llm - web-llm --- # SmolLM2-1.7B-Instruct-q4f16_1-MLC This is the [SmolLM2-1.7B-Instruct](https://huggingface.co./HuggingFaceTB/SmolLM2-1.7B-Instruct) model in MLC format `q4f16_1`. The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm). ## Example Usage Here are some examples of using this model in MLC LLM. Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages). ### Chat In command line, run ```bash mlc_llm chat HF://mlc-ai/SmolLM2-1.7B-Instruct-q4f16_1-MLC ``` ### REST Server In command line, run ```bash mlc_llm serve HF://mlc-ai/SmolLM2-1.7B-Instruct-q4f16_1-MLC ``` ### Python API ```python from mlc_llm import MLCEngine # Create engine model = "HF://mlc-ai/SmolLM2-1.7B-Instruct-q4f16_1-MLC" engine = MLCEngine(model) # Run chat completion in OpenAI API. for response in engine.chat.completions.create( messages=[{"role": "user", "content": "What is the meaning of life?"}], model=model, stream=True, ): for choice in response.choices: print(choice.delta.content, end="", flush=True) print("\n") engine.terminate() ``` ## Documentation For more information on MLC LLM project, please visit our [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm).