--- license: mit base_model: - PRIME-RL/Eurus-2-7B-PRIME - Qwen/Qwen2.5-7B-Instruct tags: - merge - mergekit - lazymergekit --- # Qwerus-7B Qwerus-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [PRIME-RL/Eurus-2-7B-PRIME](https://huggingface.co./PRIME-RL/Eurus-2-7B-PRIME) * [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co./Qwen/Qwen2.5-7B-Instruct) ## 🧩 Configuration ```yaml models: - model: Qwen/Qwen2.5-7B # No parameters necessary for base model - model: PRIME-RL/Eurus-2-7B-PRIME parameters: density: 0.56 weight: 0.5 - model: Qwen/Qwen2.5-7B-Instruct parameters: density: 0.56 weight: 0.5 merge_method: dare_ties base_model: Qwen/Qwen2.5-7B dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/Qwerus-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```