--- license: apache-2.0 tags: - mlabonne/Marcoro14-7B-slerp - dpo - rlhf datasets: - mlabonne/chatml_dpo_pairs --- ![](https://i.imgur.com/FSKtmRc.png) # NeuralMarcoro14-7B This is a DPO fine-tune version of [mlabonne/Marcoro14-7B-slerp](https://huggingface.co./mlabonne/Marcoro14-7B-slerp) This model is a merge of the following models made with [mergekit](https://github.com/cg123/mergekit): * [AIDC-ai-business/Marcoroni-7B-v3](https://huggingface.co./AIDC-ai-business/Marcoroni-7B-v3) * [EmbeddedLLM/Mistral-7B-Merge-14-v0.1](https://huggingface.co./EmbeddedLLM/Mistral-7B-Merge-14-v0.1) ## 🏆 Evaluation | Model |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average| |-------------------------|------:|------:|---------:|-------:|------:| |[Marcoro14-7B-slerp](https://huggingface.co./mlabonne/Marcoro14-7B-slerp) | 44.66| 76.24| 64.15| 45.64| 57.67| |[NeuralMarcoro14-7B](https://huggingface.co./mlabonne/NeuralMarcoro14-7B)| 44.59| 76.17| 65.94| 46.9| 58.4| |Change | -0.07| -0.07| +1.79| +1.26| +0.73| ## 🧩 Configuration ```yaml slices: - sources: - model: AIDC-ai-business/Marcoroni-7B-v3 layer_range: [0, 32] - model: EmbeddedLLM/Mistral-7B-Merge-14-v0.1 layer_range: [0, 32] merge_method: slerp base_model: AIDC-ai-business/Marcoroni-7B-v3 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/NeuralMarcoro14-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` Output: > Large Language Models (LLMs) are advanced artificial intelligence systems designed to process and generate human language. They are trained on vast amounts of text data to understand context, grammar, vocabulary, and various linguistic patterns. These models can perform tasks such as translation, summarization, text completion, question answering, and more, mimicking human-like language capabilities. Examples of well-known LLMs include GPT-3 by OpenAI and BERT by Google. Their size, measured in billions of parameters, allows them to achieve impressive results in natural language understanding and generation.