File size: 7,234 Bytes
a2bbf22
54fdf5a
a2bbf22
 
a342801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54fdf5a
 
a342801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54fdf5a
 
a342801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54fdf5a
 
a342801
 
 
 
 
 
 
 
 
 
 
 
 
54fdf5a
a342801
54fdf5a
 
a342801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54fdf5a
 
a342801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54fdf5a
 
a342801
a2bbf22
062738d
a2bbf22
 
 
27cbb73
 
46151fc
 
 
27cbb73
46151fc
348bd44
27cbb73
 
 
348bd44
f96ae7f
 
89b01e3
f96ae7f
 
92e3e74
dddaecd
92e3e74
 
a2bbf22
 
 
 
 
27cbb73
 
f308c3f
a2bbf22
 
 
062738d
 
 
 
 
 
 
 
 
 
 
 
a2bbf22
 
f308c3f
a342801
27cbb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
---
license: llama3
tags:
- dpo
datasets:
- mlabonne/orpo-dpo-mix-40k
model-index:
- name: Daredevil-8B-abliterated-dpomix
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 69.28
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 85.05
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 69.1
      name: accuracy
    source:
      url: >-
        https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 60
    source:
      url: >-
        https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.69
      name: accuracy
    source:
      url: >-
        https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 71.8
      name: accuracy
    source:
      url: >-
        https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix
      name: Open LLM Leaderboard
---
# NeuralDaredevil-8B-abliterated

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/gFEhcIDSKa3AWpkNfH91q.jpeg)

This is a DPO fine-tune of [mlabonne/Daredevil-8-abliterated](https://huggingface.co./mlabonne/Daredevil-8B-abliterated), trained on one epoch of [mlabonne/orpo-dpo-mix-40k](https://huggingface.co./datasets/mlabonne/orpo-dpo-mix-40k).
The DPO fine-tuning successfully recovers the performance loss due to the abliteration process, making it an excellent uncensored model.

## πŸ”Ž Applications

NeuralDaredevil-8B-abliterated performs better than the Instruct model on my tests.

You can use it for any application that doesn't require alignment, like role-playing. Tested on LM Studio using the "Llama 3" and "Llama 3 v2" presets.

## ⚑ Quantization

Thanks to QuantFactory, ZeroWw, Zoyd, solidrust, and tarruda for providing these quants.

* **GGUF**: https://huggingface.co./QuantFactory/NeuralDaredevil-8B-abliterated-GGUF
* **GGUF (FP16)**: https://huggingface.co./ZeroWw/NeuralDaredevil-8B-abliterated-GGUF
* **EXL2**: https://huggingface.co./Zoyd/mlabonne_NeuralDaredevil-8B-abliterated-4_0bpw_exl2
* **AWQ**: https://huggingface.co./solidrust/NeuralDaredevil-8B-abliterated-AWQ
* **ollama**:
  * **16-bit**: https://ollama.com/tarruda/neuraldaredevil-8b-abliterated
  * **8-bit**: https://ollama.com/lstep/neuraldaredevil-8b-abliterated
  * **5-bit**: https://ollama.com/closex/neuraldaredevil-8b-abliterated

## πŸ† Evaluation

### Open LLM Leaderboard

NeuralDaredevil-8B is the best-performing uncensored 8B model on the Open LLM Leaderboard (MMLU score).

![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/HQtd51mJfVRhJ0lJFLceM.png)

### Nous

Evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval). See the entire leaderboard [here](https://huggingface.co./spaces/mlabonne/Yet_Another_LLM_Leaderboard).

| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---:|---:|---:|---:|---:|
| [**mlabonne/NeuralDaredevil-8B-abliterated**](https://huggingface.co./mlabonne/NeuralDaredevil-8B-abliterated) [πŸ“„](https://gist.github.com/mlabonne/ae0bf16936cef900b72964b33c99edbc) | **55.87** | **43.73** | **73.6** | **59.36** | **46.8** |
| [mlabonne/Daredevil-8B](https://huggingface.co./mlabonne/Daredevil-8B) [πŸ“„](https://gist.github.com/mlabonne/080f9c5f153ea57a7ab7d932cf896f21) | 55.87 | 44.13 | 73.52 | 59.05 | 46.77 |
| [mlabonne/Daredevil-8B-abliterated](https://huggingface.co./mlabonne/Daredevil-8B-abliterated) [πŸ“„](https://gist.github.com/mlabonne/32cdd8460804662c856bcb2a20acd49e) | 55.06 | 43.29 | 73.33 | 57.47 | 46.17 |
| [NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co./NousResearch/Hermes-2-Theta-Llama-3-8B) [πŸ“„](https://gist.github.com/mlabonne/5df2a3051dd6eb3368a77b684635dc05) | 54.28 | 43.9 | 72.62 | 56.36 | 44.23 |
| [openchat/openchat-3.6-8b-20240522](https://huggingface.co./openchat/openchat-3.6-8b-20240522) [πŸ“„](https://gist.github.com/mlabonne/95eef8e8d26b7b17910dcb78e1c95f4a) | 53.49 | 44.03 | 73.67 | 49.78 | 46.48 |
| [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3-8B-Instruct) [πŸ“„](https://gist.github.com/mlabonne/8329284d86035e6019edb11eb0933628) | 51.34 | 41.22 | 69.86 | 51.65 | 42.64 |
| [meta-llama/Meta-Llama-3-8B](https://huggingface.co./meta-llama/Meta-Llama-3-8B) [πŸ“„](https://gist.github.com/mlabonne/616b6245137a9cfc4ea80e4c6e55d847) | 45.42 | 31.1 | 69.95 | 43.91 | 36.7 |

## 🌳 Model family tree

![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/ekwRGgnjzEOyprT8sEBFt.png)

## πŸ’» Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/Daredevil-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```