--- license: other tags: - merge - mergekit - lazymergekit base_model: - mlabonne/Meta-Llama-3-120B-Instruct - mlabonne/Meta-Llama-3-120B-Instruct - mlabonne/Meta-Llama-3-120B-Instruct - mlabonne/Meta-Llama-3-120B-Instruct - mlabonne/Meta-Llama-3-120B-Instruct - mlabonne/Meta-Llama-3-120B-Instruct - mlabonne/Meta-Llama-3-120B-Instruct - mlabonne/Meta-Llama-3-120B-Instruct - mlabonne/Meta-Llama-3-120B-Instruct - mlabonne/Meta-Llama-3-120B-Instruct - mlabonne/Meta-Llama-3-120B-Instruct - mlabonne/Meta-Llama-3-120B-Instruct - mlabonne/Meta-Llama-3-120B-Instruct --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/X1tDlFYMMFPNI_YkDXYbE.png) # Meta-Llama-3-225B-Instruct Meta-Llama-3-225B-Instruct is a self-merge with [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3-70B-Instruct). It was inspired by large merges like: - [alpindale/goliath-120b](https://huggingface.co./alpindale/goliath-120b) - [nsfwthrowitaway69/Venus-120b-v1.0](https://huggingface.co./nsfwthrowitaway69/Venus-120b-v1.0) - [cognitivecomputations/MegaDolphin-120b](https://huggingface.co./cognitivecomputations/MegaDolphin-120b) - [wolfram/miquliz-120b-v2.0](https://huggingface.co./wolfram/miquliz-120b-v2.0). I don't recommend using it as it seems to break quite easily (but feel free to prove me wrong). ## 🧩 Configuration ```yaml slices: - sources: - layer_range: [0, 20] model: mlabonne/Meta-Llama-3-120B-Instruct - sources: - layer_range: [10, 30] model: mlabonne/Meta-Llama-3-120B-Instruct - sources: - layer_range: [20, 40] model: mlabonne/Meta-Llama-3-120B-Instruct - sources: - layer_range: [30, 50] model: mlabonne/Meta-Llama-3-120B-Instruct - sources: - layer_range: [40, 60] model: mlabonne/Meta-Llama-3-120B-Instruct - sources: - layer_range: [50, 70] model: mlabonne/Meta-Llama-3-120B-Instruct - sources: - layer_range: [60, 80] model: mlabonne/Meta-Llama-3-120B-Instruct - sources: - layer_range: [70, 90] model: mlabonne/Meta-Llama-3-120B-Instruct - sources: - layer_range: [80, 100] model: mlabonne/Meta-Llama-3-120B-Instruct - sources: - layer_range: [90, 110] model: mlabonne/Meta-Llama-3-120B-Instruct - sources: - layer_range: [100, 120] model: mlabonne/Meta-Llama-3-120B-Instruct - sources: - layer_range: [110, 130] model: mlabonne/Meta-Llama-3-120B-Instruct - sources: - layer_range: [120, 140] model: mlabonne/Meta-Llama-3-120B-Instruct merge_method: passthrough dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/Meta-Llama-3-220B-Instruct" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```