--- license: cc-by-nc-4.0 tags: - merge - mergekit - lazymergekit base_model: - shadowml/WestBeagle-7B - mlabonne/NeuralBeagle14-7B - shadowml/BeagSake-7B - mlabonne/NeuralOmniBeagle-7B-v2 - mlabonne/NeuralOmniBeagle-7B - mlabonne/OmniBeagle-7B --- # ArchBeagle-7B ArchBeagle-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [shadowml/WestBeagle-7B](https://huggingface.co./shadowml/WestBeagle-7B) * [mlabonne/NeuralBeagle14-7B](https://huggingface.co./mlabonne/NeuralBeagle14-7B) * [shadowml/BeagSake-7B](https://huggingface.co./shadowml/BeagSake-7B) * [mlabonne/NeuralOmniBeagle-7B-v2](https://huggingface.co./mlabonne/NeuralOmniBeagle-7B-v2) * [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co./mlabonne/NeuralOmniBeagle-7B) * [mlabonne/OmniBeagle-7B](https://huggingface.co./mlabonne/OmniBeagle-7B) ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 # no parameters necessary for base model - model: shadowml/WestBeagle-7B parameters: density: 0.65 weight: 0.25 - model: mlabonne/NeuralBeagle14-7B parameters: density: 0.6 weight: 0.15 - model: shadowml/BeagSake-7B parameters: density: 0.55 weight: 0.1 - model: mlabonne/NeuralOmniBeagle-7B-v2 parameters: density: 0.65 weight: 0.25 - model: mlabonne/NeuralOmniBeagle-7B parameters: density: 0.6 weight: 0.15 - model: mlabonne/OmniBeagle-7B parameters: density: 0.55 weight: 0.1 merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/ArchBeagle-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```