Thomas De Decker commited on
Commit
1db7ffa
1 Parent(s): cb005eb
README.md CHANGED
@@ -1,3 +1,154 @@
1
  ---
 
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: en
3
  license: mit
4
+ tags:
5
+ - keyphrase-generation
6
+ datasets:
7
+ - midas/openkp
8
+ widget:
9
+ - text: "Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a text. Since this is a time-consuming process, Artificial Intelligence is used to automate it. Currently, classical machine learning methods, that use statistics and linguistics, are widely used for the extraction process. The fact that these methods have been widely used in the community has the advantage that there are many easy-to-use libraries. Now with the recent innovations in deep learning methods (such as recurrent neural networks and transformers, GANS, …), keyphrase extraction can be improved. These new methods also focus on the semantics and context of a document, which is quite an improvement. Thanks to the introduction of neural networks, it's also possible to generate related keyphrases based on a given text document. This is useful, for example, when an author wants to make his work findable."
10
+ example_title: "Example 1"
11
+ - text: "In this work, we explore how to learn task specific language models aimed towards learning rich representation of keyphrases from text documents. We experiment with different masking strategies for pre-training transformer language models (LMs) in discriminative as well as generative settings. In the discriminative setting, we introduce a new pre-training objective - Keyphrase Boundary Infilling with Replacement (KBIR), showing large gains in performance (up to 9.26 points in F1) over SOTA, when LM pre-trained using KBIR is fine-tuned for the task of keyphrase extraction. In the generative setting, we introduce a new pre-training setup for BART - KeyBART, that reproduces the keyphrases related to the input text in the CatSeq format, instead of the denoised original input. This also led to gains in performance (up to 4.33 points inF1@M) over SOTA for keyphrase generation. Additionally, we also fine-tune the pre-trained language models on named entity recognition(NER), question answering (QA), relation extraction (RE), abstractive summarization and achieve comparable performance with that of the SOTA, showing that learning rich representation of keyphrases is indeed beneficial for many other fundamental NLP tasks."
12
+ example_title: "Example 2"
13
+ model-index:
14
+ - name: DeDeckerThomas/keyphrase-generation-t5-small-openkp
15
+ results:
16
+ - task:
17
+ type: keyphrase-generation
18
+ name: Keyphrase Generation
19
+ dataset:
20
+ type: midas/openkp
21
+ name: openkp
22
+ metrics:
23
+ - type: F1@M (Present)
24
+ value: 0.000
25
+ name: F1@M (Present)
26
+ - type: F1@O (Present)
27
+ value: 0.000
28
+ name: F1@O (Present)
29
+ - type: F1@M (Absent)
30
+ value: 0.000
31
+ name: F1@M (Absent)
32
+ - type: F1@O (Absent)
33
+ value: 0.000
34
+ name: F1@O (Absent)
35
  ---
36
+ # 🔑 Keyphrase Generation model: T5-small-OpenKP
37
+ Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a text. Since this is a time-consuming process, Artificial Intelligence is used to automate it.
38
+ Currently, classical machine learning methods, that use statistics and linguistics, are widely used for the extraction process. The fact that these methods have been widely used in the community has the advantage that there are many easy-to-use libraries.
39
+ Now with the recent innovations in deep learning methods (such as recurrent neural networks and transformers, GANS, …), keyphrase extraction can be improved. These new methods also focus on the semantics and context of a document, which is quite an improvement. Thanks to the introduction of neural networks, it's also possible to generate related keyphrases based on a given text document. This is useful, for example, when an author wants to make his work findable.
40
+
41
+
42
+ ## 📓 Model Description
43
+ This model is a fine-tuned [T5-small model](https://huggingface.co/t5-small) on the OpenKP dataset.
44
+
45
+ ## ✋ Intended uses & limitations
46
+ ### 🛑 Limitations
47
+ * Only works for English documents.
48
+ * For a custom model, please consult the training notebook for more information (link incoming).
49
+ * Sometimes the output doesn't make any sense.
50
+
51
+ ### ❓ How to use
52
+ ```python
53
+ # Model parameters
54
+ from transformers import (
55
+ Text2TextGenerationPipeline,
56
+ AutoModelForSeq2SeqLM,
57
+ AutoTokenizer,
58
+ )
59
+ import numpy as np
60
+
61
+
62
+ class KeyphraseGenerationPipeline(Text2TextGenerationPipeline):
63
+ def __init__(self, model, keyphrase_sep_token=";", *args, **kwargs):
64
+ super().__init__(
65
+ model=AutoModelForSeq2SeqLM.from_pretrained(model),
66
+ tokenizer=AutoTokenizer.from_pretrained(model),
67
+ *args,
68
+ **kwargs
69
+ )
70
+ self.keyphrase_sep_token = keyphrase_sep_token
71
+
72
+ def postprocess(self, model_outputs):
73
+ results = super().postprocess(
74
+ model_outputs=model_outputs
75
+ )
76
+ return [[keyphrase.strip() for keyphrase in result.get("generated_text").split(self.keyphrase_sep_token)] for result in results]
77
+ ```
78
+
79
+ ```python
80
+ # Load pipeline
81
+ model_name = "DeDeckerThomas/keyphrase-generation-t5-small-openkp"
82
+ generator = KeyphraseGenerationPipeline(model=model_name)
83
+
84
+ ```python
85
+ text = """
86
+ Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a text.
87
+ Since this is a time-consuming process, Artificial Intelligence is used to automate it.
88
+ Currently, classical machine learning methods, that use statistics and linguistics, are widely used for the extraction process.
89
+ The fact that these methods have been widely used in the community has the advantage that there are many easy-to-use libraries.
90
+ Now with the recent innovations in deep learning methods (such as recurrent neural networks and transformers, GANS, …), keyphrase extraction can be improved.
91
+ These new methods also focus on the semantics and context of a document, which is quite an improvement.
92
+ """.replace(
93
+ "\n", ""
94
+ )
95
+
96
+ keyphrases = generator(text)
97
+
98
+ print(keyphrases)
99
+
100
+ ```
101
+
102
+ ```
103
+ # Output
104
+ [['keyphrase extraction', 'text analysis', 'artificial intelligence', 'classical machine learning', 'statistics']]
105
+ ```
106
+
107
+ ## 📚 Training Dataset
108
+ OpenKP is a large-scale, open-domain keyphrase extraction dataset with 148,124 real-world web documents along with 1-3 most relevant human-annotated keyphrases.
109
+
110
+ You can find more information here: https://github.com/microsoft/OpenKP.
111
+
112
+ ## 👷‍♂️ Training procedure
113
+ For more in detail information, you can take a look at the training notebook (link incoming).
114
+
115
+ ### Training parameters
116
+
117
+ | Parameter | Value |
118
+ | --------- | ------|
119
+ | Learning Rate | 5e-5 |
120
+ | Epochs | 50 |
121
+ | Early Stopping Patience | 1 |
122
+
123
+ ### Preprocessing
124
+ ```python
125
+
126
+ ```
127
+
128
+ ### Postprocessing
129
+ ```python
130
+
131
+ ```
132
+ ## 📝 Evaluation results
133
+
134
+ One of the traditional evaluation methods is the precision, recall and F1-score @k,m where k is the number that stands for the first k predicted keyphrases and m for the average amount of predicted keyphrases.
135
+ The model achieves the following results on the OpenKP test set:
136
+
137
+
138
+ Extractive keyphrases
139
+
140
+ | Dataset | P@5 | R@5 | F1@5 | P@10 | R@10 | F1@10 | P@M | R@M | F1@M | P@O | R@O | F1@O |
141
+ |:-----------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:|:----:|:----:|:----:|
142
+ | OpenKP Test Set | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
143
+
144
+ Abstractive keyphrases
145
+
146
+ | Dataset | P@5 | R@5 | F1@5 | P@10 | R@10 | F1@10 | P@M | R@M | F1@M | P@O | R@O | F1@O |
147
+ |:-----------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:|:----:|:----:|:----:|
148
+ | OpenKP Test Set | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
149
+
150
+
151
+ For more information on the evaluation process, you can take a look at the keyphrase extraction evaluation notebook.
152
+
153
+ ## 🚨 Issues
154
+ Please feel free to contact Thomas De Decker for any problems with this model.
config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "t5-small",
3
+ "architectures": [
4
+ "T5ForConditionalGeneration"
5
+ ],
6
+ "d_ff": 2048,
7
+ "d_kv": 64,
8
+ "d_model": 512,
9
+ "decoder_start_token_id": 0,
10
+ "dropout_rate": 0.1,
11
+ "eos_token_id": 1,
12
+ "feed_forward_proj": "relu",
13
+ "initializer_factor": 1.0,
14
+ "is_encoder_decoder": true,
15
+ "layer_norm_epsilon": 1e-06,
16
+ "model_type": "t5",
17
+ "n_positions": 512,
18
+ "num_decoder_layers": 6,
19
+ "num_heads": 8,
20
+ "num_layers": 6,
21
+ "output_past": true,
22
+ "pad_token_id": 0,
23
+ "relative_attention_num_buckets": 32,
24
+ "task_specific_params": {
25
+ "summarization": {
26
+ "early_stopping": true,
27
+ "length_penalty": 2.0,
28
+ "max_length": 200,
29
+ "min_length": 30,
30
+ "no_repeat_ngram_size": 3,
31
+ "num_beams": 4,
32
+ "prefix": "summarize: "
33
+ },
34
+ "translation_en_to_de": {
35
+ "early_stopping": true,
36
+ "max_length": 300,
37
+ "num_beams": 4,
38
+ "prefix": "translate English to German: "
39
+ },
40
+ "translation_en_to_fr": {
41
+ "early_stopping": true,
42
+ "max_length": 300,
43
+ "num_beams": 4,
44
+ "prefix": "translate English to French: "
45
+ },
46
+ "translation_en_to_ro": {
47
+ "early_stopping": true,
48
+ "max_length": 300,
49
+ "num_beams": 4,
50
+ "prefix": "translate English to Romanian: "
51
+ }
52
+ },
53
+ "torch_dtype": "float32",
54
+ "transformers_version": "4.17.0",
55
+ "use_cache": true,
56
+ "vocab_size": 32100
57
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:268692b1e8926449462812b089c3c9908e588a5918d696040b53f89438e8cd9b
3
+ size 242028283
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"]}
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
3
+ size 791656
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "extra_ids": 100, "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"], "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "t5-small", "tokenizer_class": "T5Tokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b2b27f6a3885338dd305cacb28fd0f36e1d4a9313cc8c1ed6e7043900f965fd
3
+ size 3183