Thomas De Decker
commited on
Commit
•
1db7ffa
1
Parent(s):
cb005eb
Add model
Browse files- README.md +151 -0
- config.json +57 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- spiece.model +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,3 +1,154 @@
|
|
1 |
---
|
|
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
license: mit
|
4 |
+
tags:
|
5 |
+
- keyphrase-generation
|
6 |
+
datasets:
|
7 |
+
- midas/openkp
|
8 |
+
widget:
|
9 |
+
- text: "Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a text. Since this is a time-consuming process, Artificial Intelligence is used to automate it. Currently, classical machine learning methods, that use statistics and linguistics, are widely used for the extraction process. The fact that these methods have been widely used in the community has the advantage that there are many easy-to-use libraries. Now with the recent innovations in deep learning methods (such as recurrent neural networks and transformers, GANS, …), keyphrase extraction can be improved. These new methods also focus on the semantics and context of a document, which is quite an improvement. Thanks to the introduction of neural networks, it's also possible to generate related keyphrases based on a given text document. This is useful, for example, when an author wants to make his work findable."
|
10 |
+
example_title: "Example 1"
|
11 |
+
- text: "In this work, we explore how to learn task specific language models aimed towards learning rich representation of keyphrases from text documents. We experiment with different masking strategies for pre-training transformer language models (LMs) in discriminative as well as generative settings. In the discriminative setting, we introduce a new pre-training objective - Keyphrase Boundary Infilling with Replacement (KBIR), showing large gains in performance (up to 9.26 points in F1) over SOTA, when LM pre-trained using KBIR is fine-tuned for the task of keyphrase extraction. In the generative setting, we introduce a new pre-training setup for BART - KeyBART, that reproduces the keyphrases related to the input text in the CatSeq format, instead of the denoised original input. This also led to gains in performance (up to 4.33 points inF1@M) over SOTA for keyphrase generation. Additionally, we also fine-tune the pre-trained language models on named entity recognition(NER), question answering (QA), relation extraction (RE), abstractive summarization and achieve comparable performance with that of the SOTA, showing that learning rich representation of keyphrases is indeed beneficial for many other fundamental NLP tasks."
|
12 |
+
example_title: "Example 2"
|
13 |
+
model-index:
|
14 |
+
- name: DeDeckerThomas/keyphrase-generation-t5-small-openkp
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
type: keyphrase-generation
|
18 |
+
name: Keyphrase Generation
|
19 |
+
dataset:
|
20 |
+
type: midas/openkp
|
21 |
+
name: openkp
|
22 |
+
metrics:
|
23 |
+
- type: F1@M (Present)
|
24 |
+
value: 0.000
|
25 |
+
name: F1@M (Present)
|
26 |
+
- type: F1@O (Present)
|
27 |
+
value: 0.000
|
28 |
+
name: F1@O (Present)
|
29 |
+
- type: F1@M (Absent)
|
30 |
+
value: 0.000
|
31 |
+
name: F1@M (Absent)
|
32 |
+
- type: F1@O (Absent)
|
33 |
+
value: 0.000
|
34 |
+
name: F1@O (Absent)
|
35 |
---
|
36 |
+
# 🔑 Keyphrase Generation model: T5-small-OpenKP
|
37 |
+
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a text. Since this is a time-consuming process, Artificial Intelligence is used to automate it.
|
38 |
+
Currently, classical machine learning methods, that use statistics and linguistics, are widely used for the extraction process. The fact that these methods have been widely used in the community has the advantage that there are many easy-to-use libraries.
|
39 |
+
Now with the recent innovations in deep learning methods (such as recurrent neural networks and transformers, GANS, …), keyphrase extraction can be improved. These new methods also focus on the semantics and context of a document, which is quite an improvement. Thanks to the introduction of neural networks, it's also possible to generate related keyphrases based on a given text document. This is useful, for example, when an author wants to make his work findable.
|
40 |
+
|
41 |
+
|
42 |
+
## 📓 Model Description
|
43 |
+
This model is a fine-tuned [T5-small model](https://huggingface.co/t5-small) on the OpenKP dataset.
|
44 |
+
|
45 |
+
## ✋ Intended uses & limitations
|
46 |
+
### 🛑 Limitations
|
47 |
+
* Only works for English documents.
|
48 |
+
* For a custom model, please consult the training notebook for more information (link incoming).
|
49 |
+
* Sometimes the output doesn't make any sense.
|
50 |
+
|
51 |
+
### ❓ How to use
|
52 |
+
```python
|
53 |
+
# Model parameters
|
54 |
+
from transformers import (
|
55 |
+
Text2TextGenerationPipeline,
|
56 |
+
AutoModelForSeq2SeqLM,
|
57 |
+
AutoTokenizer,
|
58 |
+
)
|
59 |
+
import numpy as np
|
60 |
+
|
61 |
+
|
62 |
+
class KeyphraseGenerationPipeline(Text2TextGenerationPipeline):
|
63 |
+
def __init__(self, model, keyphrase_sep_token=";", *args, **kwargs):
|
64 |
+
super().__init__(
|
65 |
+
model=AutoModelForSeq2SeqLM.from_pretrained(model),
|
66 |
+
tokenizer=AutoTokenizer.from_pretrained(model),
|
67 |
+
*args,
|
68 |
+
**kwargs
|
69 |
+
)
|
70 |
+
self.keyphrase_sep_token = keyphrase_sep_token
|
71 |
+
|
72 |
+
def postprocess(self, model_outputs):
|
73 |
+
results = super().postprocess(
|
74 |
+
model_outputs=model_outputs
|
75 |
+
)
|
76 |
+
return [[keyphrase.strip() for keyphrase in result.get("generated_text").split(self.keyphrase_sep_token)] for result in results]
|
77 |
+
```
|
78 |
+
|
79 |
+
```python
|
80 |
+
# Load pipeline
|
81 |
+
model_name = "DeDeckerThomas/keyphrase-generation-t5-small-openkp"
|
82 |
+
generator = KeyphraseGenerationPipeline(model=model_name)
|
83 |
+
|
84 |
+
```python
|
85 |
+
text = """
|
86 |
+
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a text.
|
87 |
+
Since this is a time-consuming process, Artificial Intelligence is used to automate it.
|
88 |
+
Currently, classical machine learning methods, that use statistics and linguistics, are widely used for the extraction process.
|
89 |
+
The fact that these methods have been widely used in the community has the advantage that there are many easy-to-use libraries.
|
90 |
+
Now with the recent innovations in deep learning methods (such as recurrent neural networks and transformers, GANS, …), keyphrase extraction can be improved.
|
91 |
+
These new methods also focus on the semantics and context of a document, which is quite an improvement.
|
92 |
+
""".replace(
|
93 |
+
"\n", ""
|
94 |
+
)
|
95 |
+
|
96 |
+
keyphrases = generator(text)
|
97 |
+
|
98 |
+
print(keyphrases)
|
99 |
+
|
100 |
+
```
|
101 |
+
|
102 |
+
```
|
103 |
+
# Output
|
104 |
+
[['keyphrase extraction', 'text analysis', 'artificial intelligence', 'classical machine learning', 'statistics']]
|
105 |
+
```
|
106 |
+
|
107 |
+
## 📚 Training Dataset
|
108 |
+
OpenKP is a large-scale, open-domain keyphrase extraction dataset with 148,124 real-world web documents along with 1-3 most relevant human-annotated keyphrases.
|
109 |
+
|
110 |
+
You can find more information here: https://github.com/microsoft/OpenKP.
|
111 |
+
|
112 |
+
## 👷♂️ Training procedure
|
113 |
+
For more in detail information, you can take a look at the training notebook (link incoming).
|
114 |
+
|
115 |
+
### Training parameters
|
116 |
+
|
117 |
+
| Parameter | Value |
|
118 |
+
| --------- | ------|
|
119 |
+
| Learning Rate | 5e-5 |
|
120 |
+
| Epochs | 50 |
|
121 |
+
| Early Stopping Patience | 1 |
|
122 |
+
|
123 |
+
### Preprocessing
|
124 |
+
```python
|
125 |
+
|
126 |
+
```
|
127 |
+
|
128 |
+
### Postprocessing
|
129 |
+
```python
|
130 |
+
|
131 |
+
```
|
132 |
+
## 📝 Evaluation results
|
133 |
+
|
134 |
+
One of the traditional evaluation methods is the precision, recall and F1-score @k,m where k is the number that stands for the first k predicted keyphrases and m for the average amount of predicted keyphrases.
|
135 |
+
The model achieves the following results on the OpenKP test set:
|
136 |
+
|
137 |
+
|
138 |
+
Extractive keyphrases
|
139 |
+
|
140 |
+
| Dataset | P@5 | R@5 | F1@5 | P@10 | R@10 | F1@10 | P@M | R@M | F1@M | P@O | R@O | F1@O |
|
141 |
+
|:-----------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:|:----:|:----:|:----:|
|
142 |
+
| OpenKP Test Set | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|
143 |
+
|
144 |
+
Abstractive keyphrases
|
145 |
+
|
146 |
+
| Dataset | P@5 | R@5 | F1@5 | P@10 | R@10 | F1@10 | P@M | R@M | F1@M | P@O | R@O | F1@O |
|
147 |
+
|:-----------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:|:----:|:----:|:----:|
|
148 |
+
| OpenKP Test Set | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|
149 |
+
|
150 |
+
|
151 |
+
For more information on the evaluation process, you can take a look at the keyphrase extraction evaluation notebook.
|
152 |
+
|
153 |
+
## 🚨 Issues
|
154 |
+
Please feel free to contact Thomas De Decker for any problems with this model.
|
config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "t5-small",
|
3 |
+
"architectures": [
|
4 |
+
"T5ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"d_ff": 2048,
|
7 |
+
"d_kv": 64,
|
8 |
+
"d_model": 512,
|
9 |
+
"decoder_start_token_id": 0,
|
10 |
+
"dropout_rate": 0.1,
|
11 |
+
"eos_token_id": 1,
|
12 |
+
"feed_forward_proj": "relu",
|
13 |
+
"initializer_factor": 1.0,
|
14 |
+
"is_encoder_decoder": true,
|
15 |
+
"layer_norm_epsilon": 1e-06,
|
16 |
+
"model_type": "t5",
|
17 |
+
"n_positions": 512,
|
18 |
+
"num_decoder_layers": 6,
|
19 |
+
"num_heads": 8,
|
20 |
+
"num_layers": 6,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"relative_attention_num_buckets": 32,
|
24 |
+
"task_specific_params": {
|
25 |
+
"summarization": {
|
26 |
+
"early_stopping": true,
|
27 |
+
"length_penalty": 2.0,
|
28 |
+
"max_length": 200,
|
29 |
+
"min_length": 30,
|
30 |
+
"no_repeat_ngram_size": 3,
|
31 |
+
"num_beams": 4,
|
32 |
+
"prefix": "summarize: "
|
33 |
+
},
|
34 |
+
"translation_en_to_de": {
|
35 |
+
"early_stopping": true,
|
36 |
+
"max_length": 300,
|
37 |
+
"num_beams": 4,
|
38 |
+
"prefix": "translate English to German: "
|
39 |
+
},
|
40 |
+
"translation_en_to_fr": {
|
41 |
+
"early_stopping": true,
|
42 |
+
"max_length": 300,
|
43 |
+
"num_beams": 4,
|
44 |
+
"prefix": "translate English to French: "
|
45 |
+
},
|
46 |
+
"translation_en_to_ro": {
|
47 |
+
"early_stopping": true,
|
48 |
+
"max_length": 300,
|
49 |
+
"num_beams": 4,
|
50 |
+
"prefix": "translate English to Romanian: "
|
51 |
+
}
|
52 |
+
},
|
53 |
+
"torch_dtype": "float32",
|
54 |
+
"transformers_version": "4.17.0",
|
55 |
+
"use_cache": true,
|
56 |
+
"vocab_size": 32100
|
57 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:268692b1e8926449462812b089c3c9908e588a5918d696040b53f89438e8cd9b
|
3 |
+
size 242028283
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"]}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
|
3 |
+
size 791656
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "extra_ids": 100, "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"], "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "t5-small", "tokenizer_class": "T5Tokenizer"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b2b27f6a3885338dd305cacb28fd0f36e1d4a9313cc8c1ed6e7043900f965fd
|
3 |
+
size 3183
|