mjwong commited on
Commit
4dd79cf
1 Parent(s): 9464ca1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -12
README.md CHANGED
@@ -52,12 +52,6 @@ You can then use this pipeline to classify sequences into any of the class names
52
  sequence_to_classify = "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
53
  candidate_labels = ["politics", "economy", "entertainment", "environment"]
54
  classifier(sequence_to_classify, candidate_labels)
55
- #{'sequence': 'Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU',
56
- # 'labels': ['politics', 'economy', 'environment', 'entertainment'],
57
- # 'scores': [0.4656517505645752,
58
- # 0.20842939615249634,
59
- # 0.1871575266122818,
60
- # 0.13876137137413025]}
61
  ```
62
 
63
  If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently:
@@ -65,12 +59,6 @@ If more than one candidate label can be correct, pass `multi_class=True` to calc
65
  ```python
66
  candidate_labels = ["politics", "economy", "entertainment", "environment"]
67
  classifier(sequence_to_classify, candidate_labels, multi_label=True)
68
- #{'sequence': 'Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU',
69
- # 'labels': ['politics', 'economy', 'environment', 'entertainment'],
70
- # 'scores': [0.7586008906364441,
71
- # 0.3599490225315094,
72
- # 0.3004348874092102,
73
- # 0.1562490165233612]}
74
  ```
75
 
76
  ### Eval results
 
52
  sequence_to_classify = "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
53
  candidate_labels = ["politics", "economy", "entertainment", "environment"]
54
  classifier(sequence_to_classify, candidate_labels)
 
 
 
 
 
 
55
  ```
56
 
57
  If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently:
 
59
  ```python
60
  candidate_labels = ["politics", "economy", "entertainment", "environment"]
61
  classifier(sequence_to_classify, candidate_labels, multi_label=True)
 
 
 
 
 
 
62
  ```
63
 
64
  ### Eval results