--- language: - en license: mit datasets: - glue - facebook/anli pipeline_tag: zero-shot-classification base_model: BAAI/bge-large-en model-index: - name: bge-large-en-mnli-anli results: [] --- # bge-large-en-mnli-anli This model is a fine-tuned version of [BAAI/bge-large-en](https://huggingface.co./BAAI/bge-large-en) on the glue and ANLI dataset. ## Model description [RetroMAE: Pre-Training Retrieval-oriented Language Models Via Masked Auto-Encoder](https://arxiv.org/abs/2205.12035). Shitao Xiao, Zheng Liu, Yingxia Shao, Zhao Cao, arXiv 2022 ## How to use the model ### With the zero-shot classification pipeline The model can be loaded with the `zero-shot-classification` pipeline like so: ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="mjwong/bge-large-en-mnli-anli") ``` You can then use this pipeline to classify sequences into any of the class names you specify. ```python sequence_to_classify = "one day I will see the world" candidate_labels = ['travel', 'cooking', 'dancing'] classifier(sequence_to_classify, candidate_labels) ``` If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently: ```python candidate_labels = ['travel', 'cooking', 'dancing', 'exploration'] classifier(sequence_to_classify, candidate_labels, multi_class=True) ``` ### With manual PyTorch The model can also be applied on NLI tasks like so: ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # device = "cuda:0" or "cpu" device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model_name = "mjwong/bge-large-en-mnli-anli" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) premise = "But I thought you'd sworn off coffee." hypothesis = "I thought that you vowed to drink more coffee." input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt") output = model(input["input_ids"].to(device)) prediction = torch.softmax(output["logits"][0], -1).tolist() label_names = ["entailment", "neutral", "contradiction"] prediction = {name: round(float(pred) * 100, 2) for pred, name in zip(prediction, label_names)} print(prediction) ``` ### Eval results The model was also evaluated using the dev sets for MultiNLI and test sets for ANLI. The metric used is accuracy. |Datasets|mnli_dev_m|mnli_dev_mm|anli_test_r1|anli_test_r2|anli_test_r3| | :---: | :---: | :---: | :---: | :---: | :---: | |[bge-large-en-mnli-anli](https://huggingface.co./mjwong/bge-large-en-mnli-anli)|0.846|0.842|0.602|0.451|0.452| ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3