# Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models [[paper](https://arxiv.org/abs/2410.10733)] [[GitHub](https://github.com/mit-han-lab/efficientvit)] ![demo](assets/dc_ae_demo.gif)

Figure 1: We address the reconstruction accuracy drop of high spatial-compression autoencoders.

![demo](assets/dc_ae_diffusion_demo.gif)

Figure 2: DC-AE delivers significant training and inference speedup without performance drop.

![demo](assets/Sana-0.6B-laptop.gif)

Figure 3: DC-AE enables efficient text-to-image generation on the laptop.

## Abstract We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing two key techniques: (1) Residual Autoencoding, where we design our models to learn residuals based on the space-to-channel transformed features to alleviate the optimization difficulty of high spatial-compression autoencoders; (2) Decoupled High-Resolution Adaptation, an efficient decoupled three-phases training strategy for mitigating the generalization penalty of high spatial-compression autoencoders. With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality. Applying our DC-AE to latent diffusion models, we achieve significant speedup without accuracy drop. For example, on ImageNet 512x512, our DC-AE provides 19.1x inference speedup and 17.9x training speedup on H100 GPU for UViT-H while achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder. ## Usage ### Deep Compression Autoencoder ```python # build DC-AE models # full DC-AE model list: https://huggingface.co./collections/mit-han-lab/dc-ae-670085b9400ad7197bb1009b from efficientvit.ae_model_zoo import DCAE_HF dc_ae = DCAE_HF.from_pretrained(f"mit-han-lab/dc-ae-f64c128-in-1.0") # encode from PIL import Image import torch import torchvision.transforms as transforms from torchvision.utils import save_image from efficientvit.apps.utils.image import DMCrop device = torch.device("cuda") dc_ae = dc_ae.to(device).eval() transform = transforms.Compose([ DMCrop(512), # resolution transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) image = Image.open("assets/fig/girl.png") x = transform(image)[None].to(device) latent = dc_ae.encode(x) print(latent.shape) # decode y = dc_ae.decode(latent) save_image(y * 0.5 + 0.5, "demo_dc_ae.png") ``` ### Efficient Diffusion Models with DC-AE ```python # build DC-AE-Diffusion models # full DC-AE-Diffusion model list: https://huggingface.co./collections/mit-han-lab/dc-ae-diffusion-670dbb8d6b6914cf24c1a49d from efficientvit.diffusion_model_zoo import DCAE_Diffusion_HF dc_ae_diffusion = DCAE_Diffusion_HF.from_pretrained(f"mit-han-lab/dc-ae-f64c128-in-1.0-uvit-h-in-512px-train2000k") # denoising on the latent space import torch import numpy as np from torchvision.utils import save_image torch.set_grad_enabled(False) device = torch.device("cuda") dc_ae_diffusion = dc_ae_diffusion.to(device).eval() seed = 0 torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) eval_generator = torch.Generator(device=device) eval_generator.manual_seed(seed) prompts = torch.tensor( [279, 333, 979, 936, 933, 145, 497, 1, 248, 360, 793, 12, 387, 437, 938, 978], dtype=torch.int, device=device ) num_samples = prompts.shape[0] prompts_null = 1000 * torch.ones((num_samples,), dtype=torch.int, device=device) latent_samples = dc_ae_diffusion.diffusion_model.generate(prompts, prompts_null, 6.0, eval_generator) latent_samples = latent_samples / dc_ae_diffusion.scaling_factor # decode image_samples = dc_ae_diffusion.autoencoder.decode(latent_samples) save_image(image_samples * 0.5 + 0.5, "demo_dc_ae_diffusion.png", nrow=int(np.sqrt(num_samples))) ``` ## Reference If DC-AE is useful or relevant to your research, please kindly recognize our contributions by citing our papers: ``` @article{chen2024deep, title={Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models}, author={Chen, Junyu and Cai, Han and Chen, Junsong and Xie, Enze and Yang, Shang and Tang, Haotian and Li, Muyang and Lu, Yao and Han, Song}, journal={arXiv preprint arXiv:2410.10733}, year={2024} } ```