File size: 1,751 Bytes
037dca5 6f080c5 00eacca 037dca5 6f080c5 8d2e4ef 037dca5 2e2ce7e 037dca5 abb2395 037dca5 2e2ce7e 037dca5 93f2ed2 037dca5 00eacca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
language:
- en
license: apache-2.0
tags:
- toxic
- toxicity
- offensive language
- hate speech
---
# Text Classification GoEmotions
This model is a fined-tuned version of [MiniLMv2-L6-H384](https://huggingface.co./nreimers/MiniLMv2-L6-H384-distilled-from-BERT-Large) on the on the [Jigsaw 1st Kaggle competition](https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge) dataset using [unitary/toxic-bert](https://huggingface.co./unitary/toxic-bert) as teacher model.
The quantized version in ONNX format can be found [here](https://huggingface.co./minuva/MiniLMv2-toxic-jigsaw-onnx).
The model with two labels only (toxicity and severe toxicity) is [here](https://huggingface.co./minuva/MiniLMv2-toxic-jigsaw-lite)
# Load the Model
```py
from transformers import pipeline
pipe = pipeline(model='minuva/MiniLMv2-toxic-jigsaw', task='text-classification')
pipe("This is pure trash")
# [{'label': 'toxic', 'score': 0.9383478164672852}]
```
# Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 48
- eval_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- warmup_ratio: 0.1
# Metrics (comparison with teacher model)
| Teacher (params) | Student (params) | Set (metric) | Score (teacher) | Score (student) |
|--------------------|-------------|----------|--------| --------|
| unitary/toxic-bert (110M) | MiniLMv2-toxic-jigsaw (23M) | Test (ROC_AUC) | 0.98636 | 0.98600 |
# Deployment
Check out [fast-nlp-text-toxicity repository](https://github.com/minuva/fast-nlp-text-toxicity) for a FastAPI based server to deploy this model in CPU devices. |