File size: 2,005 Bytes
6639a5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-IEMOCAP_1xx
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-IEMOCAP_1xx

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co./MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.2253
- Accuracy: 0.3303

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4440

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.2487        | 0.1   | 445  | 1.5638          | 0.3912   |
| 0.6787        | 1.1   | 890  | 1.1789          | 0.4877   |
| 0.7851        | 2.1   | 1335 | 0.9786          | 0.5811   |
| 0.3104        | 3.1   | 1780 | 1.1209          | 0.6273   |
| 0.5358        | 4.1   | 2225 | 0.8696          | 0.7084   |
| 0.3483        | 5.1   | 2670 | 1.0214          | 0.7084   |
| 0.3458        | 6.1   | 3115 | 1.0766          | 0.7125   |
| 0.2962        | 7.1   | 3560 | 1.2876          | 0.7351   |
| 0.0641        | 8.1   | 4005 | 1.3037          | 0.7382   |
| 0.0131        | 9.1   | 4440 | 1.3754          | 0.7474   |


### Framework versions

- Transformers 4.34.0
- Pytorch 1.12.0+cu116
- Datasets 2.14.5
- Tokenizers 0.14.1