minoosh commited on
Commit
c9e8c60
1 Parent(s): 147a83a

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,68 +1,57 @@
1
  ---
2
- library_name: transformers
3
  tags:
4
- - generated_from_trainer
5
- model-index:
6
- - name: bert-reg-biencoder-contrastive
7
- results: []
 
8
  ---
9
 
10
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
- should probably proofread and complete it, then remove this comment. -->
12
-
13
- # bert-reg-biencoder-contrastive
14
-
15
- This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
16
- It achieves the following results on the evaluation set:
17
- - Loss: 0.0810
18
- - Mse: 0.1141
19
- - Mae: 0.2911
20
- - Pearson Corr: 0.1024
21
- - Spearman Corr: 0.0843
22
- - Cosine Sim: 0.8774
23
-
24
- ## Model description
25
-
26
- More information needed
27
-
28
- ## Intended uses & limitations
29
-
30
- More information needed
31
-
32
- ## Training and evaluation data
33
-
34
- More information needed
35
-
36
- ## Training procedure
37
-
38
- ### Training hyperparameters
39
-
40
- The following hyperparameters were used during training:
41
- - learning_rate: 2e-05
42
- - train_batch_size: 32
43
- - eval_batch_size: 32
44
- - seed: 42
45
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
- - lr_scheduler_type: linear
47
- - lr_scheduler_warmup_steps: 100
48
- - num_epochs: 7
49
-
50
- ### Training results
51
-
52
- | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | Pearson Corr | Spearman Corr | Cosine Sim |
53
- |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------------:|:-------------:|:----------:|
54
- | 0.2152 | 1.0 | 21 | 0.2276 | 0.0979 | 0.2386 | 0.1076 | 0.1000 | 0.9041 |
55
- | 0.0862 | 2.0 | 42 | 0.0866 | 0.1147 | 0.2907 | 0.0312 | 0.0500 | 0.8688 |
56
- | 0.0663 | 3.0 | 63 | 0.0788 | 0.1066 | 0.2812 | 0.1032 | 0.1269 | 0.8903 |
57
- | 0.0569 | 4.0 | 84 | 0.0806 | 0.1047 | 0.2814 | 0.1261 | 0.1386 | 0.8897 |
58
- | 0.0524 | 5.0 | 105 | 0.0801 | 0.1114 | 0.2855 | 0.1103 | 0.1033 | 0.8819 |
59
- | 0.0487 | 6.0 | 126 | 0.0808 | 0.1117 | 0.2871 | 0.1187 | 0.0951 | 0.8806 |
60
- | 0.0451 | 7.0 | 147 | 0.0810 | 0.1141 | 0.2911 | 0.1024 | 0.0843 | 0.8774 |
61
-
62
-
63
- ### Framework versions
64
-
65
- - Transformers 4.45.1
66
- - Pytorch 2.4.0
67
- - Datasets 3.0.1
68
- - Tokenizers 0.20.0
 
1
  ---
2
+ language: en
3
  tags:
4
+ - bert
5
+ - regression
6
+ - biencoder
7
+ - similarity
8
+ pipeline_tag: text-similarity
9
  ---
10
 
11
+ # BiEncoder Regression Model
12
+
13
+ This model is a BiEncoder architecture that outputs similarity scores between text pairs.
14
+
15
+ ## Model Details
16
+ - Base Model: bert-base-uncased
17
+ - Task: Regression
18
+ - Architecture: BiEncoder with cosine similarity
19
+ - Loss Function: contrastive
20
+
21
+ ## Usage
22
+
23
+ ```python
24
+ from transformers import AutoTokenizer, AutoModel
25
+ from modeling import BiEncoderModelRegression
26
+
27
+ # Load model components
28
+ tokenizer = AutoTokenizer.from_pretrained("minoosh/bert-reg-biencoder-contrastive")
29
+ base_model = AutoModel.from_pretrained("bert-base-uncased")
30
+ model = BiEncoderModelRegression(base_model, loss_fn="contrastive")
31
+
32
+ # Load weights
33
+ state_dict = torch.load("pytorch_model.bin")
34
+ model.load_state_dict(state_dict)
35
+
36
+ # Prepare inputs
37
+ texts1 = ["first text"]
38
+ texts2 = ["second text"]
39
+ inputs = tokenizer(
40
+ texts1, texts2,
41
+ padding=True,
42
+ truncation=True,
43
+ return_tensors="pt"
44
+ )
45
+
46
+ # Get similarity scores
47
+ outputs = model(**inputs)
48
+ similarity_scores = outputs["logits"]
49
+ ```
50
+
51
+ ## Metrics
52
+ The model was trained using contrastive loss and evaluated using:
53
+ - Mean Squared Error (MSE)
54
+ - Mean Absolute Error (MAE)
55
+ - Pearson Correlation
56
+ - Spearman Correlation
57
+ - Cosine Similarity
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"return_dict": true, "output_hidden_states": false, "output_attentions": false, "torchscript": false, "torch_dtype": null, "use_bfloat16": false, "tf_legacy_loss": false, "pruned_heads": {}, "tie_word_embeddings": true, "chunk_size_feed_forward": 0, "is_encoder_decoder": false, "is_decoder": false, "cross_attention_hidden_size": null, "add_cross_attention": false, "tie_encoder_decoder": false, "max_length": 20, "min_length": 0, "do_sample": false, "early_stopping": false, "num_beams": 1, "num_beam_groups": 1, "diversity_penalty": 0.0, "temperature": 1.0, "top_k": 50, "top_p": 1.0, "typical_p": 1.0, "repetition_penalty": 1.0, "length_penalty": 1.0, "no_repeat_ngram_size": 0, "encoder_no_repeat_ngram_size": 0, "bad_words_ids": null, "num_return_sequences": 1, "output_scores": false, "return_dict_in_generate": false, "forced_bos_token_id": null, "forced_eos_token_id": null, "remove_invalid_values": false, "exponential_decay_length_penalty": null, "suppress_tokens": null, "begin_suppress_tokens": null, "architectures": ["BiEncoderModelRegression"], "finetuning_task": null, "id2label": {"0": "LABEL_0", "1": "LABEL_1"}, "label2id": {"LABEL_0": 0, "LABEL_1": 1}, "tokenizer_class": null, "prefix": null, "bos_token_id": null, "pad_token_id": 0, "eos_token_id": null, "sep_token_id": null, "decoder_start_token_id": null, "task_specific_params": null, "problem_type": null, "_name_or_path": "bert-base-uncased", "transformers_version": "4.45.1", "gradient_checkpointing": false, "model_type": "bert", "vocab_size": 30522, "hidden_size": 768, "num_hidden_layers": 12, "num_attention_heads": 12, "hidden_act": "gelu", "intermediate_size": 3072, "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 512, "type_vocab_size": 2, "initializer_range": 0.02, "layer_norm_eps": 1e-12, "position_embedding_type": "absolute", "use_cache": true, "classifier_dropout": null, "loss_fn": "contrastive", "task_type": "regression", "is_regression": true}
data_collator.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+
4
+ class BiEncoderCollator:
5
+ def __call__(self, features):
6
+ batch = {
7
+ 'input_ids_text1': torch.stack([f['input_ids_text1'] for f in features]),
8
+ 'attention_mask_text1': torch.stack([f['attention_mask_text1'] for f in features]),
9
+ 'input_ids_text2': torch.stack([f['input_ids_text2'] for f in features]),
10
+ 'attention_mask_text2': torch.stack([f['attention_mask_text2'] for f in features]),
11
+ 'labels': torch.tensor([f['labels'] for f in features], dtype=torch.float)
12
+ }
13
+ return batch
modeling.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ from transformers import PreTrainedModel
4
+
5
+ class BiEncoderModelRegression(torch.nn.Module):
6
+ def __init__(self, base_model, config=None, loss_fn="mse"):
7
+ super().__init__()
8
+ self.base_model = base_model
9
+ self.cos = torch.nn.CosineSimilarity(dim=1)
10
+ self.loss_fn = loss_fn
11
+ self.config = config
12
+
13
+ def forward(self, input_ids_text1, attention_mask_text1, input_ids_text2, attention_mask_text2, labels=None):
14
+ outputs_text1 = self.base_model(input_ids_text1, attention_mask=attention_mask_text1)
15
+ outputs_text2 = self.base_model(input_ids_text2, attention_mask=attention_mask_text2)
16
+
17
+ cls_embedding_text1 = outputs_text1.last_hidden_state[:, 0, :]
18
+ cls_embedding_text2 = outputs_text2.last_hidden_state[:, 0, :]
19
+
20
+ cos_sim = self.cos(cls_embedding_text1, cls_embedding_text2)
21
+
22
+ loss = None
23
+ if labels is not None:
24
+ if self.loss_fn == "mse":
25
+ loss_fct = torch.nn.MSELoss()
26
+ elif self.loss_fn == "mae":
27
+ loss_fct = torch.nn.L1Loss()
28
+ elif self.loss_fn == "cosine_embedding":
29
+ loss_fct = torch.nn.CosineEmbeddingLoss()
30
+ labels_cosine = 2 * (labels > 0.5).float() - 1
31
+ return {"loss": loss_fct(cls_embedding_text1, cls_embedding_text2, labels_cosine), "logits": cos_sim}
32
+
33
+ loss = loss_fct(cos_sim, labels)
34
+
35
+ return {"loss": loss, "logits": cos_sim}
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9fad9a28aef671e03942e04d5fa22f80e35bf98421fa4dd6a032ea2f0c7369e
3
+ size 438013734
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff