File size: 2,024 Bytes
2a048a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-ElderReact-Surprise11
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-ElderReact-Surprise11

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co./MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6381
- Accuracy: 0.652

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 380

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7047        | 0.1   | 39   | 0.6542          | 0.5892   |
| 0.7111        | 1.1   | 78   | 0.6551          | 0.5854   |
| 0.6839        | 2.1   | 117  | 0.6406          | 0.6508   |
| 0.6872        | 3.1   | 156  | 0.6314          | 0.6307   |
| 0.6678        | 4.1   | 195  | 0.6236          | 0.6671   |
| 0.5806        | 5.1   | 234  | 0.6078          | 0.6482   |
| 0.5697        | 6.1   | 273  | 0.6825          | 0.5980   |
| 0.6127        | 7.1   | 312  | 0.6446          | 0.6005   |
| 0.5645        | 8.1   | 351  | 0.6240          | 0.6307   |
| 0.549         | 9.08  | 380  | 0.6290          | 0.6181   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2