minh21 commited on
Commit
3461a94
·
1 Parent(s): e6bf5f1

End of training

Browse files
Files changed (5) hide show
  1. README.md +21 -11
  2. adapter_config.json +2 -2
  3. adapter_model.bin +2 -2
  4. spiece.model +3 -0
  5. training_args.bin +1 -1
README.md CHANGED
@@ -3,6 +3,8 @@ license: apache-2.0
3
  base_model: google/flan-t5-large
4
  tags:
5
  - generated_from_trainer
 
 
6
  model-index:
7
  - name: flan-t5-large-P-tuning-cpgQA
8
  results: []
@@ -15,7 +17,9 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 0.1216
 
 
19
 
20
  ## Model description
21
 
@@ -35,24 +39,30 @@ More information needed
35
 
36
  The following hyperparameters were used during training:
37
  - learning_rate: 3e-05
38
- - train_batch_size: 4
39
- - eval_batch_size: 4
40
  - seed: 42
41
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
  - lr_scheduler_type: linear
43
- - num_epochs: 2
44
 
45
  ### Training results
46
 
47
- | Training Loss | Epoch | Step | Validation Loss |
48
- |:-------------:|:-----:|:----:|:---------------:|
49
- | 0.1888 | 1.0 | 215 | 0.1245 |
50
- | 0.1657 | 2.0 | 430 | 0.1216 |
 
 
 
 
 
 
51
 
52
 
53
  ### Framework versions
54
 
55
- - Transformers 4.32.1
56
- - Pytorch 2.0.1+cu118
57
- - Datasets 2.14.4
58
  - Tokenizers 0.13.3
 
3
  base_model: google/flan-t5-large
4
  tags:
5
  - generated_from_trainer
6
+ metrics:
7
+ - bleu
8
  model-index:
9
  - name: flan-t5-large-P-tuning-cpgQA
10
  results: []
 
17
 
18
  This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.1423
21
+ - Squad: {'exact_match': 59.63302752293578, 'f1': 82.39001389589451}
22
+ - Bleu: {'bleu': 0.6044954004940006, 'precisions': [0.6696606786427146, 0.6282194848824189, 0.5842839036755386, 0.5432276657060519], 'brevity_penalty': 1.0, 'length_ratio': 1.3012987012987014, 'translation_length': 1002, 'reference_length': 770}
23
 
24
  ## Model description
25
 
 
39
 
40
  The following hyperparameters were used during training:
41
  - learning_rate: 3e-05
42
+ - train_batch_size: 8
43
+ - eval_batch_size: 8
44
  - seed: 42
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
47
+ - num_epochs: 8
48
 
49
  ### Training results
50
 
51
+ | Training Loss | Epoch | Step | Validation Loss | Squad | Bleu |
52
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
53
+ | 0.3136 | 1.0 | 494 | 0.1411 | {'exact_match': 57.79816513761468, 'f1': 81.81283979578464} | {'bleu': 0.5819448175214944, 'precisions': [0.6526946107784432, 0.6080627099664053, 0.5602027883396705, 0.515850144092219], 'brevity_penalty': 1.0, 'length_ratio': 1.363265306122449, 'translation_length': 1002, 'reference_length': 735} |
54
+ | 0.28 | 2.0 | 988 | 0.1437 | {'exact_match': 57.79816513761468, 'f1': 81.00462660225033} | {'bleu': 0.5717467837073172, 'precisions': [0.6417165668662674, 0.5968645016797313, 0.550063371356147, 0.5072046109510087], 'brevity_penalty': 1.0, 'length_ratio': 1.3707250341997264, 'translation_length': 1002, 'reference_length': 731} |
55
+ | 0.2351 | 3.0 | 1482 | 0.1436 | {'exact_match': 57.79816513761468, 'f1': 80.92424215489342} | {'bleu': 0.5786949268545348, 'precisions': [0.6477045908183633, 0.6035834266517357, 0.5576679340937896, 0.5144092219020173], 'brevity_penalty': 1.0, 'length_ratio': 1.3431635388739946, 'translation_length': 1002, 'reference_length': 746} |
56
+ | 0.2736 | 4.0 | 1976 | 0.1434 | {'exact_match': 57.79816513761468, 'f1': 80.98182982715996} | {'bleu': 0.5763280403149159, 'precisions': [0.6467065868263473, 0.6024636058230683, 0.5551330798479087, 0.5100864553314121], 'brevity_penalty': 1.0, 'length_ratio': 1.3449664429530201, 'translation_length': 1002, 'reference_length': 745} |
57
+ | 0.2408 | 5.0 | 2470 | 0.1415 | {'exact_match': 57.79816513761468, 'f1': 81.54539470265146} | {'bleu': 0.5849077021683632, 'precisions': [0.653692614770459, 0.6103023516237402, 0.5640050697084917, 0.5201729106628242], 'brevity_penalty': 1.0, 'length_ratio': 1.3306772908366533, 'translation_length': 1002, 'reference_length': 753} |
58
+ | 0.2513 | 6.0 | 2964 | 0.1426 | {'exact_match': 59.63302752293578, 'f1': 81.88361818381664} | {'bleu': 0.5934811323519371, 'precisions': [0.6606786427145709, 0.6181410974244121, 0.5728770595690748, 0.5302593659942363], 'brevity_penalty': 1.0, 'length_ratio': 1.323645970937913, 'translation_length': 1002, 'reference_length': 757} |
59
+ | 0.2231 | 7.0 | 3458 | 0.1419 | {'exact_match': 59.63302752293578, 'f1': 82.39001389589451} | {'bleu': 0.6044954004940006, 'precisions': [0.6696606786427146, 0.6282194848824189, 0.5842839036755386, 0.5432276657060519], 'brevity_penalty': 1.0, 'length_ratio': 1.3012987012987014, 'translation_length': 1002, 'reference_length': 770} |
60
+ | 0.2575 | 8.0 | 3952 | 0.1423 | {'exact_match': 59.63302752293578, 'f1': 82.39001389589451} | {'bleu': 0.6044954004940006, 'precisions': [0.6696606786427146, 0.6282194848824189, 0.5842839036755386, 0.5432276657060519], 'brevity_penalty': 1.0, 'length_ratio': 1.3012987012987014, 'translation_length': 1002, 'reference_length': 770} |
61
 
62
 
63
  ### Framework versions
64
 
65
+ - Transformers 4.33.0
66
+ - Pytorch 2.0.0
67
+ - Datasets 2.1.0
68
  - Tokenizers 0.13.3
adapter_config.json CHANGED
@@ -2,14 +2,14 @@
2
  "auto_mapping": null,
3
  "base_model_name_or_path": "google/flan-t5-large",
4
  "encoder_dropout": 0.0,
5
- "encoder_hidden_size": 1024,
6
  "encoder_num_layers": 2,
7
  "encoder_reparameterization_type": "MLP",
8
  "inference_mode": true,
9
  "num_attention_heads": 16,
10
  "num_layers": 24,
11
  "num_transformer_submodules": 2,
12
- "num_virtual_tokens": 32,
13
  "peft_type": "P_TUNING",
14
  "revision": null,
15
  "task_type": "SEQ_2_SEQ_LM",
 
2
  "auto_mapping": null,
3
  "base_model_name_or_path": "google/flan-t5-large",
4
  "encoder_dropout": 0.0,
5
+ "encoder_hidden_size": 512,
6
  "encoder_num_layers": 2,
7
  "encoder_reparameterization_type": "MLP",
8
  "inference_mode": true,
9
  "num_attention_heads": 16,
10
  "num_layers": 24,
11
  "num_transformer_submodules": 2,
12
+ "num_virtual_tokens": 20,
13
  "peft_type": "P_TUNING",
14
  "revision": null,
15
  "task_type": "SEQ_2_SEQ_LM",
adapter_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d6ad6cf6e1c5691e06f395dd7feec208d03062829a2c431db5bf476731cf5449
3
- size 262973
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e4ef7462f429e7dc25d2c171b93bbe77dc3dc0afde66274ab11ca6d537247c7
3
+ size 164605
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
3
+ size 791656
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:80bd973e4276b0e39c5425190497a1508f752cf6282ab411c0fc7d8f30b19019
3
  size 4219
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7d7726f0105a218d7812459344dce1cd3b1ba20cf586115769f5ccdc324c947
3
  size 4219