End of training
Browse files- README.md +21 -11
- adapter_config.json +2 -2
- adapter_model.bin +2 -2
- spiece.model +3 -0
- training_args.bin +1 -1
README.md
CHANGED
@@ -3,6 +3,8 @@ license: apache-2.0
|
|
3 |
base_model: google/flan-t5-large
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
model-index:
|
7 |
- name: flan-t5-large-P-tuning-cpgQA
|
8 |
results: []
|
@@ -15,7 +17,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 0.
|
|
|
|
|
19 |
|
20 |
## Model description
|
21 |
|
@@ -35,24 +39,30 @@ More information needed
|
|
35 |
|
36 |
The following hyperparameters were used during training:
|
37 |
- learning_rate: 3e-05
|
38 |
-
- train_batch_size:
|
39 |
-
- eval_batch_size:
|
40 |
- seed: 42
|
41 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
- lr_scheduler_type: linear
|
43 |
-
- num_epochs:
|
44 |
|
45 |
### Training results
|
46 |
|
47 |
-
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
-
|
49 |
-
| 0.
|
50 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
|
53 |
### Framework versions
|
54 |
|
55 |
-
- Transformers 4.
|
56 |
-
- Pytorch 2.0.
|
57 |
-
- Datasets 2.
|
58 |
- Tokenizers 0.13.3
|
|
|
3 |
base_model: google/flan-t5-large
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- bleu
|
8 |
model-index:
|
9 |
- name: flan-t5-large-P-tuning-cpgQA
|
10 |
results: []
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.1423
|
21 |
+
- Squad: {'exact_match': 59.63302752293578, 'f1': 82.39001389589451}
|
22 |
+
- Bleu: {'bleu': 0.6044954004940006, 'precisions': [0.6696606786427146, 0.6282194848824189, 0.5842839036755386, 0.5432276657060519], 'brevity_penalty': 1.0, 'length_ratio': 1.3012987012987014, 'translation_length': 1002, 'reference_length': 770}
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
- learning_rate: 3e-05
|
42 |
+
- train_batch_size: 8
|
43 |
+
- eval_batch_size: 8
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 8
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Squad | Bleu |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
53 |
+
| 0.3136 | 1.0 | 494 | 0.1411 | {'exact_match': 57.79816513761468, 'f1': 81.81283979578464} | {'bleu': 0.5819448175214944, 'precisions': [0.6526946107784432, 0.6080627099664053, 0.5602027883396705, 0.515850144092219], 'brevity_penalty': 1.0, 'length_ratio': 1.363265306122449, 'translation_length': 1002, 'reference_length': 735} |
|
54 |
+
| 0.28 | 2.0 | 988 | 0.1437 | {'exact_match': 57.79816513761468, 'f1': 81.00462660225033} | {'bleu': 0.5717467837073172, 'precisions': [0.6417165668662674, 0.5968645016797313, 0.550063371356147, 0.5072046109510087], 'brevity_penalty': 1.0, 'length_ratio': 1.3707250341997264, 'translation_length': 1002, 'reference_length': 731} |
|
55 |
+
| 0.2351 | 3.0 | 1482 | 0.1436 | {'exact_match': 57.79816513761468, 'f1': 80.92424215489342} | {'bleu': 0.5786949268545348, 'precisions': [0.6477045908183633, 0.6035834266517357, 0.5576679340937896, 0.5144092219020173], 'brevity_penalty': 1.0, 'length_ratio': 1.3431635388739946, 'translation_length': 1002, 'reference_length': 746} |
|
56 |
+
| 0.2736 | 4.0 | 1976 | 0.1434 | {'exact_match': 57.79816513761468, 'f1': 80.98182982715996} | {'bleu': 0.5763280403149159, 'precisions': [0.6467065868263473, 0.6024636058230683, 0.5551330798479087, 0.5100864553314121], 'brevity_penalty': 1.0, 'length_ratio': 1.3449664429530201, 'translation_length': 1002, 'reference_length': 745} |
|
57 |
+
| 0.2408 | 5.0 | 2470 | 0.1415 | {'exact_match': 57.79816513761468, 'f1': 81.54539470265146} | {'bleu': 0.5849077021683632, 'precisions': [0.653692614770459, 0.6103023516237402, 0.5640050697084917, 0.5201729106628242], 'brevity_penalty': 1.0, 'length_ratio': 1.3306772908366533, 'translation_length': 1002, 'reference_length': 753} |
|
58 |
+
| 0.2513 | 6.0 | 2964 | 0.1426 | {'exact_match': 59.63302752293578, 'f1': 81.88361818381664} | {'bleu': 0.5934811323519371, 'precisions': [0.6606786427145709, 0.6181410974244121, 0.5728770595690748, 0.5302593659942363], 'brevity_penalty': 1.0, 'length_ratio': 1.323645970937913, 'translation_length': 1002, 'reference_length': 757} |
|
59 |
+
| 0.2231 | 7.0 | 3458 | 0.1419 | {'exact_match': 59.63302752293578, 'f1': 82.39001389589451} | {'bleu': 0.6044954004940006, 'precisions': [0.6696606786427146, 0.6282194848824189, 0.5842839036755386, 0.5432276657060519], 'brevity_penalty': 1.0, 'length_ratio': 1.3012987012987014, 'translation_length': 1002, 'reference_length': 770} |
|
60 |
+
| 0.2575 | 8.0 | 3952 | 0.1423 | {'exact_match': 59.63302752293578, 'f1': 82.39001389589451} | {'bleu': 0.6044954004940006, 'precisions': [0.6696606786427146, 0.6282194848824189, 0.5842839036755386, 0.5432276657060519], 'brevity_penalty': 1.0, 'length_ratio': 1.3012987012987014, 'translation_length': 1002, 'reference_length': 770} |
|
61 |
|
62 |
|
63 |
### Framework versions
|
64 |
|
65 |
+
- Transformers 4.33.0
|
66 |
+
- Pytorch 2.0.0
|
67 |
+
- Datasets 2.1.0
|
68 |
- Tokenizers 0.13.3
|
adapter_config.json
CHANGED
@@ -2,14 +2,14 @@
|
|
2 |
"auto_mapping": null,
|
3 |
"base_model_name_or_path": "google/flan-t5-large",
|
4 |
"encoder_dropout": 0.0,
|
5 |
-
"encoder_hidden_size":
|
6 |
"encoder_num_layers": 2,
|
7 |
"encoder_reparameterization_type": "MLP",
|
8 |
"inference_mode": true,
|
9 |
"num_attention_heads": 16,
|
10 |
"num_layers": 24,
|
11 |
"num_transformer_submodules": 2,
|
12 |
-
"num_virtual_tokens":
|
13 |
"peft_type": "P_TUNING",
|
14 |
"revision": null,
|
15 |
"task_type": "SEQ_2_SEQ_LM",
|
|
|
2 |
"auto_mapping": null,
|
3 |
"base_model_name_or_path": "google/flan-t5-large",
|
4 |
"encoder_dropout": 0.0,
|
5 |
+
"encoder_hidden_size": 512,
|
6 |
"encoder_num_layers": 2,
|
7 |
"encoder_reparameterization_type": "MLP",
|
8 |
"inference_mode": true,
|
9 |
"num_attention_heads": 16,
|
10 |
"num_layers": 24,
|
11 |
"num_transformer_submodules": 2,
|
12 |
+
"num_virtual_tokens": 20,
|
13 |
"peft_type": "P_TUNING",
|
14 |
"revision": null,
|
15 |
"task_type": "SEQ_2_SEQ_LM",
|
adapter_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e4ef7462f429e7dc25d2c171b93bbe77dc3dc0afde66274ab11ca6d537247c7
|
3 |
+
size 164605
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
|
3 |
+
size 791656
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4219
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7d7726f0105a218d7812459344dce1cd3b1ba20cf586115769f5ccdc324c947
|
3 |
size 4219
|