File size: 1,878 Bytes
e87cc20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
base_model: xlnet-base-cased
tags:
- generated_from_trainer
model-index:
- name: XLNet-Twitter-Analysis
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# XLNet-Twitter-Analysis

This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co./xlnet-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2030
- Rmse: 0.1868

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rmse   |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.1889        | 1.0   | 1599  | 0.1784          | 0.1989 |
| 0.1301        | 2.0   | 3198  | 0.1554          | 0.1962 |
| 0.1012        | 3.0   | 4797  | 0.1586          | 0.1859 |
| 0.0784        | 4.0   | 6396  | 0.1731          | 0.1913 |
| 0.0609        | 5.0   | 7995  | 0.1475          | 0.1893 |
| 0.0459        | 6.0   | 9594  | 0.1822          | 0.1847 |
| 0.0413        | 7.0   | 11193 | 0.2089          | 0.1872 |
| 0.0382        | 8.0   | 12792 | 0.1923          | 0.1921 |
| 0.0304        | 9.0   | 14391 | 0.1954          | 0.1893 |
| 0.0261        | 10.0  | 15990 | 0.2030          | 0.1868 |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1