File size: 1,842 Bytes
a443e21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
base_model: xlnet-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: XLNet-Toxic-Comment
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# XLNet-Toxic-Comment

This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co./xlnet-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4431
- Rmse: 0.3106
- Accuracy: 0.9035
- Precision: 0.0
- Recall: 0.0
- F1: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Rmse   | Accuracy | Precision | Recall | F1  |
|:-------------:|:-----:|:------:|:---------------:|:------:|:--------:|:---------:|:------:|:---:|
| 0.4641        | 1.0   | 61873  | 0.5115          | 0.3106 | 0.9035   | 0.0       | 0.0    | 0.0 |
| 0.5065        | 2.0   | 123746 | 0.4431          | 0.3106 | 0.9035   | 0.0       | 0.0    | 0.0 |
| 0.5033        | 3.0   | 185619 | 0.4734          | 0.3106 | 0.9035   | 0.0       | 0.0    | 0.0 |
| 0.5004        | 4.0   | 247492 | 0.4710          | 0.3106 | 0.9035   | 0.0       | 0.0    | 0.0 |


### Framework versions

- Transformers 4.35.0.dev0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1