--- license: mit base_model: xlnet-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: XLNet-Reddit-Sentiment-Analysis results: [] --- # XLNet-Reddit-Sentiment-Analysis This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co./xlnet-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7135 - Rmse: 0.6123 - Accuracy: 0.8691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:--------:| | 0.8907 | 1.0 | 3790 | 0.9401 | 0.6715 | 0.8152 | | 0.7855 | 2.0 | 7580 | 0.7974 | 0.6301 | 0.8501 | | 0.6837 | 3.0 | 11370 | 0.8520 | 0.6384 | 0.8553 | | 0.6271 | 4.0 | 15160 | 0.7731 | 0.6140 | 0.8669 | | 0.5311 | 5.0 | 18950 | 0.7135 | 0.6123 | 0.8691 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.14.1