milanvelinovski commited on
Commit
ec8ab4c
·
verified ·
1 Parent(s): 0488522

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 247.30 +/- 27.38
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cd77d42e8e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cd77d42e980>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cd77d42ea20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cd77d42eac0>", "_build": "<function ActorCriticPolicy._build at 0x7cd77d42eb60>", "forward": "<function ActorCriticPolicy.forward at 0x7cd77d42ec00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cd77d42eca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cd77d42ed40>", "_predict": "<function ActorCriticPolicy._predict at 0x7cd77d42ede0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cd77d42ee80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cd77d42ef20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cd77d42efc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cd77d59f440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1737249624923280156, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBkVL2PskW6OgQxN+Y/3zEj3TW7xhBQtgAAgD8AAIA/zStjvYWzzbnYX506JoWBNdW/SDr58La5AACAPwAAgD+adae8HBYwvERru7z6O608ugmXvbKgjT0AAIA/AACAP20MGr5seJS7udolOzTVhzjsXNI8QJJGugAAgD8AAIA/c+fPvXtml7oG+5m6GRoWNmkmWDrQzLA5AACAPwAAAABNE1k9e+CJuuYY1jpk4Yw12EY2uy0P+bkAAIA/AACAP0106736/TA/XpzMPZGapr5f3Gc8giCtPAAAAAAAAAAAc7yhvY/0Oz+GRGW9W5mBvmOpp70W82m9AAAAAAAAAABAFUe+tsGoP/kZo76/RZK+4fWIviiw17wAAAAAAAAAAGbRcL2u1YO6aqpFOl4rEDWgS9S63n1muQAAgD8AAIA/zbAjPSSTcj4Ev6K+RWhovoY8DL0On5y8AAAAAAAAAAAAltW9/Zf2PlJknr1qK4y+0aJxvXOiZj0AAAAAAAAAAABhJ72d7f0+BXaoPHQIcb4uh4Y8yVuUPAAAAAAAAAAAMw+qvBTggboXXoc5MHiDNEi44jqn+Z24AACAPwAAgD/NSe68j2ZPuvrM+LpWUYq2kkhEOiDT+TUAAIA/AACAP1qMxL3hAJO6bE0ROFU+7DJEkIE5ydsntwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGVUOHWSU1SMAWyUTegDjAF0lEdAnE4WMCLde3V9lChoBkdAZ194Kx9oe2gHTegDaAhHQJxZUroW56N1fZQoaAZHQGZCnXumaYxoB03oA2gIR0CcXEU9IPK/dX2UKGgGR0BqIgFRpDeCaAdN6ANoCEdAnF0dkjHGTHV9lChoBkdAZbUPkq+ajWgHTegDaAhHQJxkeaDwpfB1fZQoaAZHQGdhjVQQ+U1oB03oA2gIR0CcZ3DPnjhldX2UKGgGR0BeqYs3AEdOaAdN6ANoCEdAnGjhXbM5fnV9lChoBkdAXSRttQ9A5mgHTegDaAhHQJxvELc9GI91fZQoaAZHQGH/m6PKdQRoB03oA2gIR0CcdN4GD+R6dX2UKGgGR0BjjN4HHFP0aAdN6ANoCEdAnHZzUNKAa3V9lChoBkdAaL6fms/6f2gHTegDaAhHQJx3cNlRP451fZQoaAZHQGGmHGsFMZhoB03oA2gIR0CceCyS3b22dX2UKGgGR0BlWB3gUDdQaAdN6ANoCEdAnHmSPdVNpXV9lChoBkdAW7faakRBeGgHTegDaAhHQJx8jXZoPCl1fZQoaAZHQGY3SiudPLxoB03oA2gIR0CcfzeSB9ThdX2UKGgGR0BjWoX668QJaAdN6ANoCEdAnH/C7PIGQnV9lChoBkdAbIKB3iaRZGgHTagCaAhHQJyU0MfA9FF1fZQoaAZHQGTCsIVuaWpoB03oA2gIR0Ccmpb+tKZldX2UKGgGR0BeuahcqvvCaAdN6ANoCEdAnKJzbJwKjXV9lChoBkdAZ4DiFTNt7GgHTegDaAhHQJykeQDFId51fZQoaAZHQGQMoRZlnRNoB03oA2gIR0Ccq7J+DvmYdX2UKGgGR0BkAUf5k9U0aAdN6ANoCEdAnK6dWp6yB3V9lChoBkdAXotWaMJhOWgHTegDaAhHQJywJutOmBR1fZQoaAZHQGKVm+9Jz1doB03oA2gIR0Cctw2MsH0LdX2UKGgGR0BJDmoJiRW+aAdL4mgIR0CcvTRWtEG8dX2UKGgGR0BkLeX1J17qaAdN6ANoCEdAnL8SGJvYOHV9lChoBkdAZIF3oLXtjWgHTegDaAhHQJzBVS619fF1fZQoaAZHQGjkU5+6RQtoB03oA2gIR0CcwsXvphWpdX2UKGgGR0BjvlWuHN5daAdN6ANoCEdAnMO9z8xbjnV9lChoBkdAY16RoRIz32gHTegDaAhHQJzFLXK8tf51fZQoaAZHQGIQuEEkjX5oB03oA2gIR0Ccx/6bvw3HdX2UKGgGR0BllN58jRlZaAdN6ANoCEdAnMqU/8l5W3V9lChoBkdAYtBpr1uivmgHTegDaAhHQJzLHlQuVX51fZQoaAZHQGaYRfWtlqdoB03oA2gIR0CczOXm/336dX2UKGgGR0BiXkDr7fpEaAdN6ANoCEdAnOPhLTQVsXV9lChoBkdAYp2PmxMWXWgHTegDaAhHQJzsHKkl/pd1fZQoaAZHQGHcfoRqXWxoB03oA2gIR0Cc7sMglnh9dX2UKGgGR0Bi2wtlI3BIaAdN6ANoCEdAnPezYqXnhnV9lChoBkdAYsRvjwQUYmgHTegDaAhHQJz7zxMFlkJ1fZQoaAZHQGYdyQgcLjRoB03oA2gIR0CdAdCgK4QSdX2UKGgGR0BoXOdI5HVgaAdN6ANoCEdAnQXZlBhQWXV9lChoBkdAZ8kbDuSfUWgHTegDaAhHQJ0G/uF6Avt1fZQoaAZHQGNrLMkhRqJoB03oA2gIR0CdCGGsV+I/dX2UKGgGR0Bf743R5TqCaAdN6ANoCEdAnQk+fdyksXV9lChoBkdAZ/PFR51Ng2gHTegDaAhHQJ0J1xvNu+B1fZQoaAZHQGcc4agmJFdoB03oA2gIR0CdCv6ltTDPdX2UKGgGR0BgTX7cfvF4aAdN6ANoCEdAnQ1kONHYpXV9lChoBkdAYnvRHf/FSGgHTegDaAhHQJ0Pfvsqril1fZQoaAZHQGTUQAMlTm5oB03oA2gIR0CdD/ax5cC6dX2UKGgGR0BnFJpUPxx2aAdN6ANoCEdAnRFq2OQyRHV9lChoBkdASEw4GUwBYGgHS/doCEdAnSXIPTXrdHV9lChoBkdAaD3UvwmVq2gHTegDaAhHQJ0qBNg0CRx1fZQoaAZHQGaDoOx0MgFoB03oA2gIR0CdMM4b0e2edX2UKGgGR0BnnTlRxcVyaAdN6ANoCEdAnTKa/mDDj3V9lChoBkdAZB0aXrt3OmgHTegDaAhHQJ05b3Fkxyp1fZQoaAZHQGCzGelKsdVoB03oA2gIR0CdPX8nNPgvdX2UKGgGR0BikCKk2xY8aAdN6ANoCEdAnUPFsguAZ3V9lChoBkdAYGJvUjLSu2gHTegDaAhHQJ1IEGD+R5l1fZQoaAZHQGRcI3R5TqBoB03oA2gIR0CdSUJPqLTAdX2UKGgGR0BmnnEqDsdDaAdN6ANoCEdAnUq6XF98Z3V9lChoBkdAZQNugpSaVmgHTegDaAhHQJ1LpwuM+/x1fZQoaAZHQGY1nm7rcCZoB03oA2gIR0CdTb3UhFEzdX2UKGgGR0BoD9ie/YapaAdN6ANoCEdAnVCyWAwwkHV9lChoBkdAZkOiBXjlxWgHTegDaAhHQJ1UaWjXWe91fZQoaAZHQGOm2XC0ngJoB03oA2gIR0CdVUVwPy08dX2UKGgGR0BhehxJd0JXaAdN6ANoCEdAnVemHYYixHV9lChoBkdAaCmLDQ7cPGgHTegDaAhHQJ1r9hw2l2x1fZQoaAZHQGaipRXOnl5oB03oA2gIR0Cdb6rXUYsNdX2UKGgGR0BjHVVaOgg6aAdN6ANoCEdAnXeqcVgx8HV9lChoBkdAXTnTRYzSC2gHTegDaAhHQJ15xJf6XSl1fZQoaAZHQF1JAO8TSLJoB03oA2gIR0CdgeWdmQKbdX2UKGgGR0Bi2S/9Hc1waAdN6ANoCEdAnYgZxzaK13V9lChoBkdAYK+W0JF9a2gHTegDaAhHQJ2SCLcbiqB1fZQoaAZHQGHVIHTqjahoB03oA2gIR0CdlxQ/oq0/dX2UKGgGR0Bo3QCSzPa+aAdN6ANoCEdAnZh+zdDYy3V9lChoBkdAZEan8baRIWgHTegDaAhHQJ2aOPaL4vh1fZQoaAZHQGQVmKQ7tAtoB03oA2gIR0Cdm1fjCHh1dX2UKGgGR0BgJqRuCPIXaAdN6ANoCEdAnZ3OqBEroXV9lChoBkdAZHsN70Fr22gHTegDaAhHQJ2hM9+w1SB1fZQoaAZHQGSp0RnOB19oB03oA2gIR0CdpCSZSeiBdX2UKGgGR0Bct1fzBhx6aAdN6ANoCEdAnaTKvA44qHV9lChoBkdAP65hfBvaUWgHS/RoCEdAnaX4n0Cih3V9lChoBkdAYNb95yEL6WgHTegDaAhHQJ2murMkhRt1fZQoaAZHQGhHbg0j1PFoB03oA2gIR0CdqTEETxoadX2UKGgGR0BheHm9xp+MaAdN6ANoCEdAnb9oMF2V3XV9lChoBkdAZObcmjTKDGgHTegDaAhHQJ3I8HE/B311fZQoaAZHQGY5XUYsNDtoB03oA2gIR0Cdyw3i704BdX2UKGgGR0BkNP7UG3WnaAdN6ANoCEdAndK003wTd3V9lChoBkdAZLDkBCD28WgHTegDaAhHQJ3XSlenhsJ1fZQoaAZHQF2yyD7IkqtoB03oA2gIR0Cd3iPXTVlPdX2UKGgGR0BjpH4oJAt4aAdN6ANoCEdAneLq7yxzJnV9lChoBkdAYYp0dRzij2gHTegDaAhHQJ3lzGR3eN11fZQoaAZHQGVuAsK9f1JoB03oA2gIR0Cd5tTlkpZwdX2UKGgGR0BmXCO3lS0jaAdN6ANoCEdAnekV6E8JU3V9lChoBkdAZwI8aGYa52gHTegDaAhHQJ3sWe+VTrF1fZQoaAZHQGeq/qX4TK1oB03oA2gIR0Cd8B+L3sX0dX2UKGgGR0BlU06tDD0laAdN6ANoCEdAnfDrrC3w1HV9lChoBkdAZbvaakRBeGgHTegDaAhHQJ3yXDUExIt1fZQoaAZHQGUOk/bCaZxoB03oA2gIR0Cd80KekHlfdX2UKGgGR0BojivX9R77aAdN6ANoCEdAnfZhwQ176nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab7a658bf73ae03c9ee5015974946a8a889808ab2ef2c86a042da84f0783f989
3
+ size 148132
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7cd77d42e8e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cd77d42e980>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cd77d42ea20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cd77d42eac0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7cd77d42eb60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7cd77d42ec00>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cd77d42eca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cd77d42ed40>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7cd77d42ede0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cd77d42ee80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cd77d42ef20>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cd77d42efc0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7cd77d59f440>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1737249624923280156,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBkVL2PskW6OgQxN+Y/3zEj3TW7xhBQtgAAgD8AAIA/zStjvYWzzbnYX506JoWBNdW/SDr58La5AACAPwAAgD+adae8HBYwvERru7z6O608ugmXvbKgjT0AAIA/AACAP20MGr5seJS7udolOzTVhzjsXNI8QJJGugAAgD8AAIA/c+fPvXtml7oG+5m6GRoWNmkmWDrQzLA5AACAPwAAAABNE1k9e+CJuuYY1jpk4Yw12EY2uy0P+bkAAIA/AACAP0106736/TA/XpzMPZGapr5f3Gc8giCtPAAAAAAAAAAAc7yhvY/0Oz+GRGW9W5mBvmOpp70W82m9AAAAAAAAAABAFUe+tsGoP/kZo76/RZK+4fWIviiw17wAAAAAAAAAAGbRcL2u1YO6aqpFOl4rEDWgS9S63n1muQAAgD8AAIA/zbAjPSSTcj4Ev6K+RWhovoY8DL0On5y8AAAAAAAAAAAAltW9/Zf2PlJknr1qK4y+0aJxvXOiZj0AAAAAAAAAAABhJ72d7f0+BXaoPHQIcb4uh4Y8yVuUPAAAAAAAAAAAMw+qvBTggboXXoc5MHiDNEi44jqn+Z24AACAPwAAgD/NSe68j2ZPuvrM+LpWUYq2kkhEOiDT+TUAAIA/AACAP1qMxL3hAJO6bE0ROFU+7DJEkIE5ydsntwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGVUOHWSU1SMAWyUTegDjAF0lEdAnE4WMCLde3V9lChoBkdAZ194Kx9oe2gHTegDaAhHQJxZUroW56N1fZQoaAZHQGZCnXumaYxoB03oA2gIR0CcXEU9IPK/dX2UKGgGR0BqIgFRpDeCaAdN6ANoCEdAnF0dkjHGTHV9lChoBkdAZbUPkq+ajWgHTegDaAhHQJxkeaDwpfB1fZQoaAZHQGdhjVQQ+U1oB03oA2gIR0CcZ3DPnjhldX2UKGgGR0BeqYs3AEdOaAdN6ANoCEdAnGjhXbM5fnV9lChoBkdAXSRttQ9A5mgHTegDaAhHQJxvELc9GI91fZQoaAZHQGH/m6PKdQRoB03oA2gIR0CcdN4GD+R6dX2UKGgGR0BjjN4HHFP0aAdN6ANoCEdAnHZzUNKAa3V9lChoBkdAaL6fms/6f2gHTegDaAhHQJx3cNlRP451fZQoaAZHQGGmHGsFMZhoB03oA2gIR0CceCyS3b22dX2UKGgGR0BlWB3gUDdQaAdN6ANoCEdAnHmSPdVNpXV9lChoBkdAW7faakRBeGgHTegDaAhHQJx8jXZoPCl1fZQoaAZHQGY3SiudPLxoB03oA2gIR0CcfzeSB9ThdX2UKGgGR0BjWoX668QJaAdN6ANoCEdAnH/C7PIGQnV9lChoBkdAbIKB3iaRZGgHTagCaAhHQJyU0MfA9FF1fZQoaAZHQGTCsIVuaWpoB03oA2gIR0Ccmpb+tKZldX2UKGgGR0BeuahcqvvCaAdN6ANoCEdAnKJzbJwKjXV9lChoBkdAZ4DiFTNt7GgHTegDaAhHQJykeQDFId51fZQoaAZHQGQMoRZlnRNoB03oA2gIR0Ccq7J+DvmYdX2UKGgGR0BkAUf5k9U0aAdN6ANoCEdAnK6dWp6yB3V9lChoBkdAXotWaMJhOWgHTegDaAhHQJywJutOmBR1fZQoaAZHQGKVm+9Jz1doB03oA2gIR0Cctw2MsH0LdX2UKGgGR0BJDmoJiRW+aAdL4mgIR0CcvTRWtEG8dX2UKGgGR0BkLeX1J17qaAdN6ANoCEdAnL8SGJvYOHV9lChoBkdAZIF3oLXtjWgHTegDaAhHQJzBVS619fF1fZQoaAZHQGjkU5+6RQtoB03oA2gIR0CcwsXvphWpdX2UKGgGR0BjvlWuHN5daAdN6ANoCEdAnMO9z8xbjnV9lChoBkdAY16RoRIz32gHTegDaAhHQJzFLXK8tf51fZQoaAZHQGIQuEEkjX5oB03oA2gIR0Ccx/6bvw3HdX2UKGgGR0BllN58jRlZaAdN6ANoCEdAnMqU/8l5W3V9lChoBkdAYtBpr1uivmgHTegDaAhHQJzLHlQuVX51fZQoaAZHQGaYRfWtlqdoB03oA2gIR0CczOXm/336dX2UKGgGR0BiXkDr7fpEaAdN6ANoCEdAnOPhLTQVsXV9lChoBkdAYp2PmxMWXWgHTegDaAhHQJzsHKkl/pd1fZQoaAZHQGHcfoRqXWxoB03oA2gIR0Cc7sMglnh9dX2UKGgGR0Bi2wtlI3BIaAdN6ANoCEdAnPezYqXnhnV9lChoBkdAYsRvjwQUYmgHTegDaAhHQJz7zxMFlkJ1fZQoaAZHQGYdyQgcLjRoB03oA2gIR0CdAdCgK4QSdX2UKGgGR0BoXOdI5HVgaAdN6ANoCEdAnQXZlBhQWXV9lChoBkdAZ8kbDuSfUWgHTegDaAhHQJ0G/uF6Avt1fZQoaAZHQGNrLMkhRqJoB03oA2gIR0CdCGGsV+I/dX2UKGgGR0Bf743R5TqCaAdN6ANoCEdAnQk+fdyksXV9lChoBkdAZ/PFR51Ng2gHTegDaAhHQJ0J1xvNu+B1fZQoaAZHQGcc4agmJFdoB03oA2gIR0CdCv6ltTDPdX2UKGgGR0BgTX7cfvF4aAdN6ANoCEdAnQ1kONHYpXV9lChoBkdAYnvRHf/FSGgHTegDaAhHQJ0Pfvsqril1fZQoaAZHQGTUQAMlTm5oB03oA2gIR0CdD/ax5cC6dX2UKGgGR0BnFJpUPxx2aAdN6ANoCEdAnRFq2OQyRHV9lChoBkdASEw4GUwBYGgHS/doCEdAnSXIPTXrdHV9lChoBkdAaD3UvwmVq2gHTegDaAhHQJ0qBNg0CRx1fZQoaAZHQGaDoOx0MgFoB03oA2gIR0CdMM4b0e2edX2UKGgGR0BnnTlRxcVyaAdN6ANoCEdAnTKa/mDDj3V9lChoBkdAZB0aXrt3OmgHTegDaAhHQJ05b3Fkxyp1fZQoaAZHQGCzGelKsdVoB03oA2gIR0CdPX8nNPgvdX2UKGgGR0BikCKk2xY8aAdN6ANoCEdAnUPFsguAZ3V9lChoBkdAYGJvUjLSu2gHTegDaAhHQJ1IEGD+R5l1fZQoaAZHQGRcI3R5TqBoB03oA2gIR0CdSUJPqLTAdX2UKGgGR0BmnnEqDsdDaAdN6ANoCEdAnUq6XF98Z3V9lChoBkdAZQNugpSaVmgHTegDaAhHQJ1LpwuM+/x1fZQoaAZHQGY1nm7rcCZoB03oA2gIR0CdTb3UhFEzdX2UKGgGR0BoD9ie/YapaAdN6ANoCEdAnVCyWAwwkHV9lChoBkdAZkOiBXjlxWgHTegDaAhHQJ1UaWjXWe91fZQoaAZHQGOm2XC0ngJoB03oA2gIR0CdVUVwPy08dX2UKGgGR0BhehxJd0JXaAdN6ANoCEdAnVemHYYixHV9lChoBkdAaCmLDQ7cPGgHTegDaAhHQJ1r9hw2l2x1fZQoaAZHQGaipRXOnl5oB03oA2gIR0Cdb6rXUYsNdX2UKGgGR0BjHVVaOgg6aAdN6ANoCEdAnXeqcVgx8HV9lChoBkdAXTnTRYzSC2gHTegDaAhHQJ15xJf6XSl1fZQoaAZHQF1JAO8TSLJoB03oA2gIR0CdgeWdmQKbdX2UKGgGR0Bi2S/9Hc1waAdN6ANoCEdAnYgZxzaK13V9lChoBkdAYK+W0JF9a2gHTegDaAhHQJ2SCLcbiqB1fZQoaAZHQGHVIHTqjahoB03oA2gIR0CdlxQ/oq0/dX2UKGgGR0Bo3QCSzPa+aAdN6ANoCEdAnZh+zdDYy3V9lChoBkdAZEan8baRIWgHTegDaAhHQJ2aOPaL4vh1fZQoaAZHQGQVmKQ7tAtoB03oA2gIR0Cdm1fjCHh1dX2UKGgGR0BgJqRuCPIXaAdN6ANoCEdAnZ3OqBEroXV9lChoBkdAZHsN70Fr22gHTegDaAhHQJ2hM9+w1SB1fZQoaAZHQGSp0RnOB19oB03oA2gIR0CdpCSZSeiBdX2UKGgGR0Bct1fzBhx6aAdN6ANoCEdAnaTKvA44qHV9lChoBkdAP65hfBvaUWgHS/RoCEdAnaX4n0Cih3V9lChoBkdAYNb95yEL6WgHTegDaAhHQJ2murMkhRt1fZQoaAZHQGhHbg0j1PFoB03oA2gIR0CdqTEETxoadX2UKGgGR0BheHm9xp+MaAdN6ANoCEdAnb9oMF2V3XV9lChoBkdAZObcmjTKDGgHTegDaAhHQJ3I8HE/B311fZQoaAZHQGY5XUYsNDtoB03oA2gIR0Cdyw3i704BdX2UKGgGR0BkNP7UG3WnaAdN6ANoCEdAndK003wTd3V9lChoBkdAZLDkBCD28WgHTegDaAhHQJ3XSlenhsJ1fZQoaAZHQF2yyD7IkqtoB03oA2gIR0Cd3iPXTVlPdX2UKGgGR0BjpH4oJAt4aAdN6ANoCEdAneLq7yxzJnV9lChoBkdAYYp0dRzij2gHTegDaAhHQJ3lzGR3eN11fZQoaAZHQGVuAsK9f1JoB03oA2gIR0Cd5tTlkpZwdX2UKGgGR0BmXCO3lS0jaAdN6ANoCEdAnekV6E8JU3V9lChoBkdAZwI8aGYa52gHTegDaAhHQJ3sWe+VTrF1fZQoaAZHQGeq/qX4TK1oB03oA2gIR0Cd8B+L3sX0dX2UKGgGR0BlU06tDD0laAdN6ANoCEdAnfDrrC3w1HV9lChoBkdAZbvaakRBeGgHTegDaAhHQJ3yXDUExIt1fZQoaAZHQGUOk/bCaZxoB03oA2gIR0Cd80KekHlfdX2UKGgGR0BojivX9R77aAdN6ANoCEdAnfZhwQ176nVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d8cca4ec74e9c469b25d2944f841ea2dad3240e35f43129bcc464ee6d311cc4
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae9a4247cbc94b5a4d31449bae88754df64033e86a11ca6386926e4c44c2100a
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.11.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (156 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 247.3023945330679, "std_reward": 27.376956542365647, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-19T01:45:08.391253"}