File size: 2,214 Bytes
faaba36 a2c1034 faaba36 a2c1034 23a388d faaba36 a2c1034 faaba36 12a24a5 faaba36 a2c1034 faaba36 12a24a5 faaba36 566ec45 a2c1034 12a24a5 e07f3c6 faaba36 12a24a5 faaba36 12a24a5 faaba36 a2c1034 faaba36 a2c1034 faaba36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
language:
- cs
license: apache-2.0
tags:
- whisper-event
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
base_model: openai/whisper-medium
model-index:
- name: Whisper Medium Czech 2 CV11
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: cs
split: test
metrics:
- type: wer
value: 11.408629675328264
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium Czech 2 CV11
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 cs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2417
- Wer: 11.4086
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0105 | 4.24 | 1000 | 0.1973 | 12.6130 |
| 0.0016 | 8.47 | 2000 | 0.2198 | 11.8985 |
| 0.0004 | 12.71 | 3000 | 0.2310 | 11.4547 |
| 0.0003 | 16.95 | 4000 | 0.2380 | 11.4270 |
| 0.0002 | 21.19 | 5000 | 0.2417 | 11.4086 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|