mikegarts commited on
Commit
1f1bfb5
·
1 Parent(s): 4bea0f3

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.52 +/- 0.71
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6679f68451d381343998830af5869d1336ee1161b47f00776ca6a71696d93155
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f62a642a0d0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f62a64255a0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1675692390477627937,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0HDhPjRNUrxETxE/0HDhPjRNUrxETxE/0HDhPjRNUrxETxE/0HDhPjRNUrxETxE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAy0Syv1zJ4T3U2xU/TmvCv4cJJL2pB88+frLav/PCrz26Sn8/I+e1P2BCS77jvI+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADQcOE+NE1SvERPET8hkmc8UxrHusc5JzzQcOE+NE1SvERPET8hkmc8UxrHusc5JzzQcOE+NE1SvERPET8hkmc8UxrHusc5JzzQcOE+NE1SvERPET8hkmc8UxrHusc5JzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.44031382 -0.01283579 0.56761575]\n [ 0.44031382 -0.01283579 0.56761575]\n [ 0.44031382 -0.01283579 0.56761575]\n [ 0.44031382 -0.01283579 0.56761575]]",
60
+ "desired_goal": "[[-1.3927244 0.11024734 0.58538556]\n [-1.5188997 -0.04004815 0.40435532]\n [-1.7085721 0.08582105 0.997234 ]\n [ 1.4211162 -0.19849539 -1.1229519 ]]",
61
+ "observation": "[[ 0.44031382 -0.01283579 0.56761575 0.01413396 -0.00151903 0.01020665]\n [ 0.44031382 -0.01283579 0.56761575 0.01413396 -0.00151903 0.01020665]\n [ 0.44031382 -0.01283579 0.56761575 0.01413396 -0.00151903 0.01020665]\n [ 0.44031382 -0.01283579 0.56761575 0.01413396 -0.00151903 0.01020665]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEYSXPcsiED6yaos9jQnMPeI5OjxRGHM+CDcwvfZsqD0kW4I+RzHZPVMHLz0ICwk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.07398237 0.14075772 0.0680746 ]\n [ 0.09962759 0.01136634 0.23739745]\n [-0.04302123 0.08223908 0.2546016 ]\n [ 0.10605102 0.04273159 0.13383114]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpBzMJsBw9b+UhpRSlIwBbJRLMowBdJRHQKPlB71Iy0t1fZQoaAZoCWgPQwjcuwZ96a3yv5SGlFKUaBVLMmgWR0Cj5MMnAqNIdX2UKGgGaAloD0MIAcCxZ88l97+UhpRSlGgVSzJoFkdAo+SHag261HV9lChoBmgJaA9DCK8Hk+LjE/m/lIaUUpRoFUsyaBZHQKPkTR/mT1V1fZQoaAZoCWgPQwi5VRADXfv2v5SGlFKUaBVLMmgWR0Cj5hhkiD/VdX2UKGgGaAloD0MIZcdGIF7X6L+UhpRSlGgVSzJoFkdAo+XT0QK8c3V9lChoBmgJaA9DCMsSnWUWYfm/lIaUUpRoFUsyaBZHQKPll+UhV2l1fZQoaAZoCWgPQwiRt1z92KQEwJSGlFKUaBVLMmgWR0Cj5V2WY4Q0dX2UKGgGaAloD0MIuwm+afos/7+UhpRSlGgVSzJoFkdAo+cyWC2+f3V9lChoBmgJaA9DCF2o/Gt55eq/lIaUUpRoFUsyaBZHQKPm7ayrxRV1fZQoaAZoCWgPQwg/4IEBhM/wv5SGlFKUaBVLMmgWR0Cj5rG+9Jz1dX2UKGgGaAloD0MIdCZtqu4R47+UhpRSlGgVSzJoFkdAo+Z3fMwDeXV9lChoBmgJaA9DCAoxl1Rtt+u/lIaUUpRoFUsyaBZHQKPoQoVmBe51fZQoaAZoCWgPQwgTZW8p54v7v5SGlFKUaBVLMmgWR0Cj5/3YL9dedX2UKGgGaAloD0MIbCQJwhWwBMCUhpRSlGgVSzJoFkdAo+fB6+nIhnV9lChoBmgJaA9DCDbNO07REey/lIaUUpRoFUsyaBZHQKPnh5mh/RV1fZQoaAZoCWgPQwhfe2ZJgNr5v5SGlFKUaBVLMmgWR0Cj6VoegctHdX2UKGgGaAloD0MIG7tE9daA9L+UhpRSlGgVSzJoFkdAo+kWE9Mbm3V9lChoBmgJaA9DCCVATS1ba+G/lIaUUpRoFUsyaBZHQKPo2izsyBV1fZQoaAZoCWgPQwgEj2/vGvTzv5SGlFKUaBVLMmgWR0Cj6J/ag261dX2UKGgGaAloD0MI0A1N2emH9b+UhpRSlGgVSzJoFkdAo+p5Pbfxc3V9lChoBmgJaA9DCLQh/8wgvva/lIaUUpRoFUsyaBZHQKPqNMY/FBJ1fZQoaAZoCWgPQwjbiZKQSNvav5SGlFKUaBVLMmgWR0Cj6fjfNzKcdX2UKGgGaAloD0MIaahRSDKr8L+UhpRSlGgVSzJoFkdAo+m+glF+eHV9lChoBmgJaA9DCAjlfRzNUf6/lIaUUpRoFUsyaBZHQKPrjQRf4RF1fZQoaAZoCWgPQwgW+8vuyUPyv5SGlFKUaBVLMmgWR0Cj60h3aBZqdX2UKGgGaAloD0MIKlQ3F3/b47+UhpRSlGgVSzJoFkdAo+sMsnRb8nV9lChoBmgJaA9DCHpVZ7XAnuO/lIaUUpRoFUsyaBZHQKPq0n9ehPF1fZQoaAZoCWgPQwjQtS+gF27iv5SGlFKUaBVLMmgWR0Cj7KUPQOWjdX2UKGgGaAloD0MIFCNL5lge+L+UhpRSlGgVSzJoFkdAo+xgcghbGHV9lChoBmgJaA9DCL2L9+P2ywDAlIaUUpRoFUsyaBZHQKPsJLJSzgN1fZQoaAZoCWgPQwjmIOhoVYv2v5SGlFKUaBVLMmgWR0Cj6+pOnEVGdX2UKGgGaAloD0MIwf2ABwaQ/L+UhpRSlGgVSzJoFkdAo+2zz3AVPHV9lChoBmgJaA9DCJJYUu4+R/W/lIaUUpRoFUsyaBZHQKPtbx4ptrN1fZQoaAZoCWgPQwjAIOnTKvrlv5SGlFKUaBVLMmgWR0Cj7TMnZ00WdX2UKGgGaAloD0MIgH9KlSj7/b+UhpRSlGgVSzJoFkdAo+z4xWT5f3V9lChoBmgJaA9DCBnKiXYV0vS/lIaUUpRoFUsyaBZHQKPuxdP+GXZ1fZQoaAZoCWgPQwgKuyh64CP/v5SGlFKUaBVLMmgWR0Cj7oE0SAYpdX2UKGgGaAloD0MIOpFgqpn1AcCUhpRSlGgVSzJoFkdAo+5FTWGyonV9lChoBmgJaA9DCM2Pv7Soj/m/lIaUUpRoFUsyaBZHQKPuCt03fhx1fZQoaAZoCWgPQwgdyeU/pN/vv5SGlFKUaBVLMmgWR0Cj7+iudPLxdX2UKGgGaAloD0MIzt+EQgRc+L+UhpRSlGgVSzJoFkdAo++k5CF9KHV9lChoBmgJaA9DCHqqQ26GW/W/lIaUUpRoFUsyaBZHQKPvaQ6p5u91fZQoaAZoCWgPQwjZz2Ipkq/cv5SGlFKUaBVLMmgWR0Cj7y7HhjvvdX2UKGgGaAloD0MIKnEd44rLAMCUhpRSlGgVSzJoFkdAo/EodZJTVHV9lChoBmgJaA9DCIuoiT4fpfi/lIaUUpRoFUsyaBZHQKPw5B0IToN1fZQoaAZoCWgPQwjmkNRCyWTlv5SGlFKUaBVLMmgWR0Cj8Kgssg+ydX2UKGgGaAloD0MIWOGWj6Sk/L+UhpRSlGgVSzJoFkdAo/BuDjBEa3V9lChoBmgJaA9DCDrpfeNrzwHAlIaUUpRoFUsyaBZHQKPyPGyX2M91fZQoaAZoCWgPQwgbuW5Kee35v5SGlFKUaBVLMmgWR0Cj8fe98JD3dX2UKGgGaAloD0MIsRpLWBsjAMCUhpRSlGgVSzJoFkdAo/G70UXYUXV9lChoBmgJaA9DCD8aTpmbDwTAlIaUUpRoFUsyaBZHQKPxgYtxuKp1fZQoaAZoCWgPQwhG66hqgqj9v5SGlFKUaBVLMmgWR0Cj81ARTS9edX2UKGgGaAloD0MItr+zPXoD97+UhpRSlGgVSzJoFkdAo/MLawljVnV9lChoBmgJaA9DCC3OGOYErfG/lIaUUpRoFUsyaBZHQKPyz2tdRix1fZQoaAZoCWgPQwjz4y8t6nMCwJSGlFKUaBVLMmgWR0Cj8pUeMhoudX2UKGgGaAloD0MIg/qWOV2W97+UhpRSlGgVSzJoFkdAo/RgsPJ7s3V9lChoBmgJaA9DCDeN7bWg9/m/lIaUUpRoFUsyaBZHQKP0HAKOT7l1fZQoaAZoCWgPQwiPcjCbAEP1v5SGlFKUaBVLMmgWR0Cj8+AWSEDhdX2UKGgGaAloD0MITMYxkj1C+L+UhpRSlGgVSzJoFkdAo/Ol09yLh3V9lChoBmgJaA9DCE8g7BSrBui/lIaUUpRoFUsyaBZHQKP1fksBhhJ1fZQoaAZoCWgPQwgFTyFX6pkBwJSGlFKUaBVLMmgWR0Cj9Tmdy1eCdX2UKGgGaAloD0MI8NsQ4zWv87+UhpRSlGgVSzJoFkdAo/T9uBMBZXV9lChoBmgJaA9DCE6dR8X/ney/lIaUUpRoFUsyaBZHQKP0w1/lQuV1fZQoaAZoCWgPQwgyIeaSqu39v5SGlFKUaBVLMmgWR0Cj9rYXfqHHdX2UKGgGaAloD0MIGJY/3xYsBcCUhpRSlGgVSzJoFkdAo/ZxhBqsVHV9lChoBmgJaA9DCKCLhoxHSQLAlIaUUpRoFUsyaBZHQKP2NlV94NZ1fZQoaAZoCWgPQwjnx19a1Of0v5SGlFKUaBVLMmgWR0Cj9fwMH8jzdX2UKGgGaAloD0MImnyzzY0p/r+UhpRSlGgVSzJoFkdAo/fLt9hJAnV9lChoBmgJaA9DCDvD1JY6iPS/lIaUUpRoFUsyaBZHQKP3hw0fozN1fZQoaAZoCWgPQwjdmJ6wxAPfv5SGlFKUaBVLMmgWR0Cj90sgEEDAdX2UKGgGaAloD0MIbjMV4pF46r+UhpRSlGgVSzJoFkdAo/cQ1gpjMHV9lChoBmgJaA9DCDnSGRh52fq/lIaUUpRoFUsyaBZHQKP46UbDMvB1fZQoaAZoCWgPQwhsX0Av3Lnwv5SGlFKUaBVLMmgWR0Cj+KSWJJoTdX2UKGgGaAloD0MIbf30nzW/5r+UhpRSlGgVSzJoFkdAo/hov38GcHV9lChoBmgJaA9DCBZPPdLg9vu/lIaUUpRoFUsyaBZHQKP4Lmhdt2t1fZQoaAZoCWgPQwjJkc7AyMvdv5SGlFKUaBVLMmgWR0Cj+faiblRxdX2UKGgGaAloD0MI2xX6YBlb/7+UhpRSlGgVSzJoFkdAo/myM3qA0HV9lChoBmgJaA9DCKJe8GlOXvy/lIaUUpRoFUsyaBZHQKP5dn+yZ8d1fZQoaAZoCWgPQwjM7zSZ8XYBwJSGlFKUaBVLMmgWR0Cj+TxW912adX2UKGgGaAloD0MI8IgK1c0F8b+UhpRSlGgVSzJoFkdAo/sP/T9bYHV9lChoBmgJaA9DCAMkmkARCwPAlIaUUpRoFUsyaBZHQKP6y1IAfdR1fZQoaAZoCWgPQwinI4CbxQvyv5SGlFKUaBVLMmgWR0Cj+o9gv115dX2UKGgGaAloD0MI5iK+E7Pe9L+UhpRSlGgVSzJoFkdAo/pVEPUaynV9lChoBmgJaA9DCO3Xne488fm/lIaUUpRoFUsyaBZHQKP8H5nlGPR1fZQoaAZoCWgPQwhmwcQfRV37v5SGlFKUaBVLMmgWR0Cj+9r/KhcrdX2UKGgGaAloD0MIf8Fu2Lbo9L+UhpRSlGgVSzJoFkdAo/ufAbhm5HV9lChoBmgJaA9DCAthNZawtuK/lIaUUpRoFUsyaBZHQKP7ZL4etCB1fZQoaAZoCWgPQwh0mC8vwH70v5SGlFKUaBVLMmgWR0Cj/TPIGQjmdX2UKGgGaAloD0MIHy457pRO+7+UhpRSlGgVSzJoFkdAo/zvIZIg/3V9lChoBmgJaA9DCKTFGcOcIOq/lIaUUpRoFUsyaBZHQKP8s0eEIxB1fZQoaAZoCWgPQwgL1c3F37bwv5SGlFKUaBVLMmgWR0Cj/HkAo5PudX2UKGgGaAloD0MI6NuCpboA+b+UhpRSlGgVSzJoFkdAo/5AZ62OQ3V9lChoBmgJaA9DCOuPMAxYsvm/lIaUUpRoFUsyaBZHQKP9+78Nx2l1fZQoaAZoCWgPQwhprWhznNvqv5SGlFKUaBVLMmgWR0Cj/b/PHDJmdX2UKGgGaAloD0MIopxoVyEl+L+UhpRSlGgVSzJoFkdAo/2FjTa0yHV9lChoBmgJaA9DCJj6eVORSvW/lIaUUpRoFUsyaBZHQKP/U4WDYiB1fZQoaAZoCWgPQwi/fLJiuHoDwJSGlFKUaBVLMmgWR0Cj/w7Tc6/7dX2UKGgGaAloD0MIcm9+w0QD9L+UhpRSlGgVSzJoFkdAo/7S+10DEHV9lChoBmgJaA9DCOTYeoZwTAzAlIaUUpRoFUsyaBZHQKP+mISDh991ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3d363b328fe6b747f87b24c42b09d54bab18ef9f06acc82f8b12eed35245066
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5637bf7cb963248d0f78407fd29ac87ebe4ea2f79c14431c3e43e029f00edf88
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f62a642a0d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f62a64255a0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675692390477627937, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0HDhPjRNUrxETxE/0HDhPjRNUrxETxE/0HDhPjRNUrxETxE/0HDhPjRNUrxETxE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAy0Syv1zJ4T3U2xU/TmvCv4cJJL2pB88+frLav/PCrz26Sn8/I+e1P2BCS77jvI+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADQcOE+NE1SvERPET8hkmc8UxrHusc5JzzQcOE+NE1SvERPET8hkmc8UxrHusc5JzzQcOE+NE1SvERPET8hkmc8UxrHusc5JzzQcOE+NE1SvERPET8hkmc8UxrHusc5JzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.44031382 -0.01283579 0.56761575]\n [ 0.44031382 -0.01283579 0.56761575]\n [ 0.44031382 -0.01283579 0.56761575]\n [ 0.44031382 -0.01283579 0.56761575]]", "desired_goal": "[[-1.3927244 0.11024734 0.58538556]\n [-1.5188997 -0.04004815 0.40435532]\n [-1.7085721 0.08582105 0.997234 ]\n [ 1.4211162 -0.19849539 -1.1229519 ]]", "observation": "[[ 0.44031382 -0.01283579 0.56761575 0.01413396 -0.00151903 0.01020665]\n [ 0.44031382 -0.01283579 0.56761575 0.01413396 -0.00151903 0.01020665]\n [ 0.44031382 -0.01283579 0.56761575 0.01413396 -0.00151903 0.01020665]\n [ 0.44031382 -0.01283579 0.56761575 0.01413396 -0.00151903 0.01020665]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEYSXPcsiED6yaos9jQnMPeI5OjxRGHM+CDcwvfZsqD0kW4I+RzHZPVMHLz0ICwk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07398237 0.14075772 0.0680746 ]\n [ 0.09962759 0.01136634 0.23739745]\n [-0.04302123 0.08223908 0.2546016 ]\n [ 0.10605102 0.04273159 0.13383114]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpBzMJsBw9b+UhpRSlIwBbJRLMowBdJRHQKPlB71Iy0t1fZQoaAZoCWgPQwjcuwZ96a3yv5SGlFKUaBVLMmgWR0Cj5MMnAqNIdX2UKGgGaAloD0MIAcCxZ88l97+UhpRSlGgVSzJoFkdAo+SHag261HV9lChoBmgJaA9DCK8Hk+LjE/m/lIaUUpRoFUsyaBZHQKPkTR/mT1V1fZQoaAZoCWgPQwi5VRADXfv2v5SGlFKUaBVLMmgWR0Cj5hhkiD/VdX2UKGgGaAloD0MIZcdGIF7X6L+UhpRSlGgVSzJoFkdAo+XT0QK8c3V9lChoBmgJaA9DCMsSnWUWYfm/lIaUUpRoFUsyaBZHQKPll+UhV2l1fZQoaAZoCWgPQwiRt1z92KQEwJSGlFKUaBVLMmgWR0Cj5V2WY4Q0dX2UKGgGaAloD0MIuwm+afos/7+UhpRSlGgVSzJoFkdAo+cyWC2+f3V9lChoBmgJaA9DCF2o/Gt55eq/lIaUUpRoFUsyaBZHQKPm7ayrxRV1fZQoaAZoCWgPQwg/4IEBhM/wv5SGlFKUaBVLMmgWR0Cj5rG+9Jz1dX2UKGgGaAloD0MIdCZtqu4R47+UhpRSlGgVSzJoFkdAo+Z3fMwDeXV9lChoBmgJaA9DCAoxl1Rtt+u/lIaUUpRoFUsyaBZHQKPoQoVmBe51fZQoaAZoCWgPQwgTZW8p54v7v5SGlFKUaBVLMmgWR0Cj5/3YL9dedX2UKGgGaAloD0MIbCQJwhWwBMCUhpRSlGgVSzJoFkdAo+fB6+nIhnV9lChoBmgJaA9DCDbNO07REey/lIaUUpRoFUsyaBZHQKPnh5mh/RV1fZQoaAZoCWgPQwhfe2ZJgNr5v5SGlFKUaBVLMmgWR0Cj6VoegctHdX2UKGgGaAloD0MIG7tE9daA9L+UhpRSlGgVSzJoFkdAo+kWE9Mbm3V9lChoBmgJaA9DCCVATS1ba+G/lIaUUpRoFUsyaBZHQKPo2izsyBV1fZQoaAZoCWgPQwgEj2/vGvTzv5SGlFKUaBVLMmgWR0Cj6J/ag261dX2UKGgGaAloD0MI0A1N2emH9b+UhpRSlGgVSzJoFkdAo+p5Pbfxc3V9lChoBmgJaA9DCLQh/8wgvva/lIaUUpRoFUsyaBZHQKPqNMY/FBJ1fZQoaAZoCWgPQwjbiZKQSNvav5SGlFKUaBVLMmgWR0Cj6fjfNzKcdX2UKGgGaAloD0MIaahRSDKr8L+UhpRSlGgVSzJoFkdAo+m+glF+eHV9lChoBmgJaA9DCAjlfRzNUf6/lIaUUpRoFUsyaBZHQKPrjQRf4RF1fZQoaAZoCWgPQwgW+8vuyUPyv5SGlFKUaBVLMmgWR0Cj60h3aBZqdX2UKGgGaAloD0MIKlQ3F3/b47+UhpRSlGgVSzJoFkdAo+sMsnRb8nV9lChoBmgJaA9DCHpVZ7XAnuO/lIaUUpRoFUsyaBZHQKPq0n9ehPF1fZQoaAZoCWgPQwjQtS+gF27iv5SGlFKUaBVLMmgWR0Cj7KUPQOWjdX2UKGgGaAloD0MIFCNL5lge+L+UhpRSlGgVSzJoFkdAo+xgcghbGHV9lChoBmgJaA9DCL2L9+P2ywDAlIaUUpRoFUsyaBZHQKPsJLJSzgN1fZQoaAZoCWgPQwjmIOhoVYv2v5SGlFKUaBVLMmgWR0Cj6+pOnEVGdX2UKGgGaAloD0MIwf2ABwaQ/L+UhpRSlGgVSzJoFkdAo+2zz3AVPHV9lChoBmgJaA9DCJJYUu4+R/W/lIaUUpRoFUsyaBZHQKPtbx4ptrN1fZQoaAZoCWgPQwjAIOnTKvrlv5SGlFKUaBVLMmgWR0Cj7TMnZ00WdX2UKGgGaAloD0MIgH9KlSj7/b+UhpRSlGgVSzJoFkdAo+z4xWT5f3V9lChoBmgJaA9DCBnKiXYV0vS/lIaUUpRoFUsyaBZHQKPuxdP+GXZ1fZQoaAZoCWgPQwgKuyh64CP/v5SGlFKUaBVLMmgWR0Cj7oE0SAYpdX2UKGgGaAloD0MIOpFgqpn1AcCUhpRSlGgVSzJoFkdAo+5FTWGyonV9lChoBmgJaA9DCM2Pv7Soj/m/lIaUUpRoFUsyaBZHQKPuCt03fhx1fZQoaAZoCWgPQwgdyeU/pN/vv5SGlFKUaBVLMmgWR0Cj7+iudPLxdX2UKGgGaAloD0MIzt+EQgRc+L+UhpRSlGgVSzJoFkdAo++k5CF9KHV9lChoBmgJaA9DCHqqQ26GW/W/lIaUUpRoFUsyaBZHQKPvaQ6p5u91fZQoaAZoCWgPQwjZz2Ipkq/cv5SGlFKUaBVLMmgWR0Cj7y7HhjvvdX2UKGgGaAloD0MIKnEd44rLAMCUhpRSlGgVSzJoFkdAo/EodZJTVHV9lChoBmgJaA9DCIuoiT4fpfi/lIaUUpRoFUsyaBZHQKPw5B0IToN1fZQoaAZoCWgPQwjmkNRCyWTlv5SGlFKUaBVLMmgWR0Cj8Kgssg+ydX2UKGgGaAloD0MIWOGWj6Sk/L+UhpRSlGgVSzJoFkdAo/BuDjBEa3V9lChoBmgJaA9DCDrpfeNrzwHAlIaUUpRoFUsyaBZHQKPyPGyX2M91fZQoaAZoCWgPQwgbuW5Kee35v5SGlFKUaBVLMmgWR0Cj8fe98JD3dX2UKGgGaAloD0MIsRpLWBsjAMCUhpRSlGgVSzJoFkdAo/G70UXYUXV9lChoBmgJaA9DCD8aTpmbDwTAlIaUUpRoFUsyaBZHQKPxgYtxuKp1fZQoaAZoCWgPQwhG66hqgqj9v5SGlFKUaBVLMmgWR0Cj81ARTS9edX2UKGgGaAloD0MItr+zPXoD97+UhpRSlGgVSzJoFkdAo/MLawljVnV9lChoBmgJaA9DCC3OGOYErfG/lIaUUpRoFUsyaBZHQKPyz2tdRix1fZQoaAZoCWgPQwjz4y8t6nMCwJSGlFKUaBVLMmgWR0Cj8pUeMhoudX2UKGgGaAloD0MIg/qWOV2W97+UhpRSlGgVSzJoFkdAo/RgsPJ7s3V9lChoBmgJaA9DCDeN7bWg9/m/lIaUUpRoFUsyaBZHQKP0HAKOT7l1fZQoaAZoCWgPQwiPcjCbAEP1v5SGlFKUaBVLMmgWR0Cj8+AWSEDhdX2UKGgGaAloD0MITMYxkj1C+L+UhpRSlGgVSzJoFkdAo/Ol09yLh3V9lChoBmgJaA9DCE8g7BSrBui/lIaUUpRoFUsyaBZHQKP1fksBhhJ1fZQoaAZoCWgPQwgFTyFX6pkBwJSGlFKUaBVLMmgWR0Cj9Tmdy1eCdX2UKGgGaAloD0MI8NsQ4zWv87+UhpRSlGgVSzJoFkdAo/T9uBMBZXV9lChoBmgJaA9DCE6dR8X/ney/lIaUUpRoFUsyaBZHQKP0w1/lQuV1fZQoaAZoCWgPQwgyIeaSqu39v5SGlFKUaBVLMmgWR0Cj9rYXfqHHdX2UKGgGaAloD0MIGJY/3xYsBcCUhpRSlGgVSzJoFkdAo/ZxhBqsVHV9lChoBmgJaA9DCKCLhoxHSQLAlIaUUpRoFUsyaBZHQKP2NlV94NZ1fZQoaAZoCWgPQwjnx19a1Of0v5SGlFKUaBVLMmgWR0Cj9fwMH8jzdX2UKGgGaAloD0MImnyzzY0p/r+UhpRSlGgVSzJoFkdAo/fLt9hJAnV9lChoBmgJaA9DCDvD1JY6iPS/lIaUUpRoFUsyaBZHQKP3hw0fozN1fZQoaAZoCWgPQwjdmJ6wxAPfv5SGlFKUaBVLMmgWR0Cj90sgEEDAdX2UKGgGaAloD0MIbjMV4pF46r+UhpRSlGgVSzJoFkdAo/cQ1gpjMHV9lChoBmgJaA9DCDnSGRh52fq/lIaUUpRoFUsyaBZHQKP46UbDMvB1fZQoaAZoCWgPQwhsX0Av3Lnwv5SGlFKUaBVLMmgWR0Cj+KSWJJoTdX2UKGgGaAloD0MIbf30nzW/5r+UhpRSlGgVSzJoFkdAo/hov38GcHV9lChoBmgJaA9DCBZPPdLg9vu/lIaUUpRoFUsyaBZHQKP4Lmhdt2t1fZQoaAZoCWgPQwjJkc7AyMvdv5SGlFKUaBVLMmgWR0Cj+faiblRxdX2UKGgGaAloD0MI2xX6YBlb/7+UhpRSlGgVSzJoFkdAo/myM3qA0HV9lChoBmgJaA9DCKJe8GlOXvy/lIaUUpRoFUsyaBZHQKP5dn+yZ8d1fZQoaAZoCWgPQwjM7zSZ8XYBwJSGlFKUaBVLMmgWR0Cj+TxW912adX2UKGgGaAloD0MI8IgK1c0F8b+UhpRSlGgVSzJoFkdAo/sP/T9bYHV9lChoBmgJaA9DCAMkmkARCwPAlIaUUpRoFUsyaBZHQKP6y1IAfdR1fZQoaAZoCWgPQwinI4CbxQvyv5SGlFKUaBVLMmgWR0Cj+o9gv115dX2UKGgGaAloD0MI5iK+E7Pe9L+UhpRSlGgVSzJoFkdAo/pVEPUaynV9lChoBmgJaA9DCO3Xne488fm/lIaUUpRoFUsyaBZHQKP8H5nlGPR1fZQoaAZoCWgPQwhmwcQfRV37v5SGlFKUaBVLMmgWR0Cj+9r/KhcrdX2UKGgGaAloD0MIf8Fu2Lbo9L+UhpRSlGgVSzJoFkdAo/ufAbhm5HV9lChoBmgJaA9DCAthNZawtuK/lIaUUpRoFUsyaBZHQKP7ZL4etCB1fZQoaAZoCWgPQwh0mC8vwH70v5SGlFKUaBVLMmgWR0Cj/TPIGQjmdX2UKGgGaAloD0MIHy457pRO+7+UhpRSlGgVSzJoFkdAo/zvIZIg/3V9lChoBmgJaA9DCKTFGcOcIOq/lIaUUpRoFUsyaBZHQKP8s0eEIxB1fZQoaAZoCWgPQwgL1c3F37bwv5SGlFKUaBVLMmgWR0Cj/HkAo5PudX2UKGgGaAloD0MI6NuCpboA+b+UhpRSlGgVSzJoFkdAo/5AZ62OQ3V9lChoBmgJaA9DCOuPMAxYsvm/lIaUUpRoFUsyaBZHQKP9+78Nx2l1fZQoaAZoCWgPQwhprWhznNvqv5SGlFKUaBVLMmgWR0Cj/b/PHDJmdX2UKGgGaAloD0MIopxoVyEl+L+UhpRSlGgVSzJoFkdAo/2FjTa0yHV9lChoBmgJaA9DCJj6eVORSvW/lIaUUpRoFUsyaBZHQKP/U4WDYiB1fZQoaAZoCWgPQwi/fLJiuHoDwJSGlFKUaBVLMmgWR0Cj/w7Tc6/7dX2UKGgGaAloD0MIcm9+w0QD9L+UhpRSlGgVSzJoFkdAo/7S+10DEHV9lChoBmgJaA9DCOTYeoZwTAzAlIaUUpRoFUsyaBZHQKP+mISDh991ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (288 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.5181728882249446, "std_reward": 0.7081695850246853, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-06T14:49:16.221373"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c365a8d7862bb60096206d0c3ae99044a98d2fbdbe1f8f210db4fa65cea3d2fe
3
+ size 3056