File size: 2,831 Bytes
d0196f6
 
 
 
cdb864f
d0196f6
 
 
 
 
 
5f20b9d
d0196f6
3ef318c
d0196f6
d6a4b1f
d0196f6
cd10833
 
d0196f6
d6a4b1f
d0196f6
d6a4b1f
 
 
d0196f6
3ef318c
d0196f6
d6a4b1f
 
 
 
 
 
 
d0196f6
d6a4b1f
d0196f6
cd10833
d0196f6
 
d6a4b1f
 
 
 
d0196f6
d6a4b1f
 
 
 
 
 
 
d0196f6
d6a4b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0196f6
 
 
cd10833
d0196f6
d6a4b1f
 
cd10833
d6a4b1f
 
cd10833
cdb864f
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: other
tags:
- generated_from_trainer
base_model: mistralai/Codestral-22B-v0.1
model-index:
- name: home/ubuntu/trinity-codestral-1
  results: []
---


![Trinity](https://huggingface.co./migtissera/Trinity-13B-v1.0/resolve/main/Trinity.png) 

Trinity is a coding specific Large Language Model series created by [Migel Tissera](https://x.com/migtissera).

The compute for this model was generously sponsored by [KindoAI](https://kindo.ai).

# Prompt Format
ChatML

# Sample Inference Python Script:

```python
import torch, json
from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "migtissera/Trinity-2-Codestral-22B"

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype=torch.float16,
    device_map="auto",
    load_in_4bit=True,
    trust_remote_code=False,
)

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=False)

terminators = [tokenizer.convert_tokens_to_ids("<|im_end|>")]


def generate_text(instruction):
    tokens = tokenizer.encode(instruction)
    tokens = torch.LongTensor(tokens).unsqueeze(0)
    tokens = tokens.to("cuda")

    instance = {
        "input_ids": tokens,
        "top_p": 1.0,
        "temperature": 0.75,
        "generate_len": 2048,
        "top_k": 50,
    }

    length = len(tokens[0])
    with torch.no_grad():
        rest = model.generate(
            input_ids=tokens,
            max_length=length + instance["generate_len"],
            use_cache=True,
            do_sample=True,
            top_p=instance["top_p"],
            temperature=instance["temperature"],
            top_k=instance["top_k"],
            num_return_sequences=1,
            pad_token_id=tokenizer.eos_token_id,
            eos_token_id=terminators,
        )
    output = rest[0][length:]
    string = tokenizer.decode(output, skip_special_tokens=True)
    return f"{string}"



conversation = f"""<|im_start|>system\nYou are Tess, a helful AI assitant. You always provide detailed answers without hesitation. Do not refuse.<|im_end|>\n<|im_start|>user\n"""

while True:
    user_input = input("You: ")
    llm_prompt = f"{conversation}{user_input}<|im_end|>\n<|im_start|>assistant\n"
    answer = generate_text(llm_prompt)
    print(answer)
    conversation = f"{llm_prompt}{answer}<|im_end|>\n<|im_start|>user\n"
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_migtissera__Trinity-2-Codestral-22B)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |21.82|
|IFEval (0-Shot)    |42.02|
|BBH (3-Shot)       |36.41|
|MATH Lvl 5 (4-Shot)| 8.61|
|GPQA (0-shot)      | 8.61|
|MuSR (0-shot)      | 9.61|
|MMLU-PRO (5-shot)  |25.64|