migtissera
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -97,3 +97,94 @@ special_tokens:
|
|
97 |
```
|
98 |
|
99 |
</details><br>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
```
|
98 |
|
99 |
</details><br>
|
100 |
+
|
101 |
+
# Tess-3-7B-SFT
|
102 |
+
|
103 |
+
![Tess-3](https://huggingface.co/migtissera/Tess-v2.5-Qwen2-72B/resolve/main/Tess-v2.5.png)
|
104 |
+
|
105 |
+
Tess-3-7B is a finetuned version of the Mistral-7B-v0.3 base model. This version is the first phase of the final Tess-3 model, and have been trained with supervised fine-tuning (SFT) on a curated dataset of ~500K samples. The total SFT dataset contains about 1B tokens.
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
# Sample code to run inference
|
111 |
+
|
112 |
+
Note that this model uses ChatML prompt format.
|
113 |
+
|
114 |
+
```python
|
115 |
+
import torch, json
|
116 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
117 |
+
from stop_word import StopWordCriteria
|
118 |
+
|
119 |
+
model_path = "migtissera/Tess-3-7B-SFT"
|
120 |
+
output_file_path = "/home/migel/conversations.jsonl"
|
121 |
+
|
122 |
+
model = AutoModelForCausalLM.from_pretrained(
|
123 |
+
model_path,
|
124 |
+
torch_dtype=torch.float16,
|
125 |
+
device_map="auto",
|
126 |
+
load_in_4bit=False,
|
127 |
+
trust_remote_code=True,
|
128 |
+
)
|
129 |
+
|
130 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
131 |
+
|
132 |
+
terminators = [
|
133 |
+
tokenizer.convert_tokens_to_ids("<|im_end|>")
|
134 |
+
]
|
135 |
+
|
136 |
+
def generate_text(instruction):
|
137 |
+
tokens = tokenizer.encode(instruction)
|
138 |
+
tokens = torch.LongTensor(tokens).unsqueeze(0)
|
139 |
+
tokens = tokens.to("cuda")
|
140 |
+
|
141 |
+
instance = {
|
142 |
+
"input_ids": tokens,
|
143 |
+
"top_p": 1.0,
|
144 |
+
"temperature": 0.75,
|
145 |
+
"generate_len": 1024,
|
146 |
+
"top_k": 50,
|
147 |
+
}
|
148 |
+
|
149 |
+
length = len(tokens[0])
|
150 |
+
with torch.no_grad():
|
151 |
+
rest = model.generate(
|
152 |
+
input_ids=tokens,
|
153 |
+
max_length=length + instance["generate_len"],
|
154 |
+
use_cache=True,
|
155 |
+
do_sample=True,
|
156 |
+
top_p=instance["top_p"],
|
157 |
+
temperature=instance["temperature"],
|
158 |
+
top_k=instance["top_k"],
|
159 |
+
num_return_sequences=1,
|
160 |
+
pad_token_id=tokenizer.eos_token_id,
|
161 |
+
eos_token_id=terminators,
|
162 |
+
)
|
163 |
+
output = rest[0][length:]
|
164 |
+
string = tokenizer.decode(output, skip_special_tokens=True)
|
165 |
+
return f"{string}"
|
166 |
+
|
167 |
+
conversation = f"""<|im_start|>system\nYou are Tesoro, a helful AI assitant. You always provide detailed answers without hesitation.<|im_end|>\n<|im_start|>user\n"""
|
168 |
+
|
169 |
+
while True:
|
170 |
+
user_input = input("You: ")
|
171 |
+
llm_prompt = f"{conversation}{user_input}<|im_end|>\n<|im_start|>assistant\n"
|
172 |
+
answer = generate_text(llm_prompt)
|
173 |
+
print(answer)
|
174 |
+
conversation = f"{llm_prompt}{answer}\n"
|
175 |
+
json_data = {"prompt": user_input, "answer": answer}
|
176 |
+
|
177 |
+
with open(output_file_path, "a") as output_file:
|
178 |
+
output_file.write(json.dumps(json_data) + "\n")
|
179 |
+
```
|
180 |
+
|
181 |
+
# Join My General AI Discord (NeuroLattice):
|
182 |
+
https://discord.gg/Hz6GrwGFKD
|
183 |
+
|
184 |
+
# Limitations & Biases:
|
185 |
+
|
186 |
+
While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
|
187 |
+
|
188 |
+
Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
|
189 |
+
|
190 |
+
Exercise caution and cross-check information when necessary. This is an uncensored model.
|