File size: 3,507 Bytes
7cb3780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.3
tags:
- generated_from_trainer
model-index:
- name: home/migel/tess-2.5-mistral-7B-phase-1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: mistralai/Mistral-7B-v0.3
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
tokenizer_use_fast: false

load_in_8bit: false
load_in_4bit: false
strict: false
model_config:

datasets:
  - path: /home/migel/ai_datasets/tess-v1.5b-chatml.jsonl
    type: sharegpt
    conversation: chatml
  - path: /home/migel/ai_datasets/Tess-3.0/Tess-3.0-multi_turn_chatml.jsonl
    type: sharegpt
    conversation: chatml
  - path: /home/migel/ai_datasets/Tess-3.0/Tess-3.0-single_turn_chatml.jsonl
    type: sharegpt
    conversation: chatml

chat_template: chatml

dataset_prepared_path: last_run_prepared_mistral
val_set_size: 0.0
output_dir: /home/migel/tess-2.5-mistral-7B-phase-1

resume_from_checkpoint: /home/migel/tess-2.5-mistral-7B-phase-1/checkpoint-440 
auto_resume_from_checkpoints: true

sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true

gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 1
logging_steps: 1
optimizer: adamw_8bit
lr_scheduler: constant
learning_rate: 1e-6

wandb_project: mistral-7b
wandb_watch:
wandb_run_id:
wandb_log_model:

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
saves_per_epoch: 10
evals_per_epoch: 10
save_total_limit: 3
save_steps:
eval_sample_packing: false
debug:
deepspeed: /home/migel/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<|im_start|>"
  eos_token: "<|im_end|>"
  pad_token: "<|end_of_text|>"


```

</details><br>

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/migtissera/mistral-7b/runs/cd38b2jb)
# home/migel/tess-2.5-mistral-7B-phase-1

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co./mistralai/Mistral-7B-v0.3) on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 32
- num_epochs: 1

### Training results



### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1