--- language: - en library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - dataset_size:100K - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) - **Language:** en ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("mics-nlp/xlm-roberta-small-all-nli-triplet") # Run inference sentences = [ 'a baby smiling', 'A baby is unhappy.', 'The dog has big ears.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Triplet * Dataset: `all-nli-dev` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:-------------------|:----------| | cosine_accuracy | 0.849 | | dot_accuracy | 0.163 | | manhattan_accuracy | 0.837 | | euclidean_accuracy | 0.841 | | **max_accuracy** | **0.849** | #### Triplet * Dataset: `all-nli-test` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:-------------------|:----------| | cosine_accuracy | 0.839 | | dot_accuracy | 0.15 | | manhattan_accuracy | 0.827 | | euclidean_accuracy | 0.827 | | **max_accuracy** | **0.839** | ## Training Details ### Training Dataset #### sentence-transformers/all-nli * Dataset: [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co./datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) * Size: 100,000 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------| | A person on a horse jumps over a broken down airplane. | A person is outdoors, on a horse. | A person is at a diner, ordering an omelette. | | Children smiling and waving at camera | There are children present | The kids are frowning | | A boy is jumping on skateboard in the middle of a red bridge. | The boy does a skateboarding trick. | The boy skates down the sidewalk. | * Loss: [CachedMultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### sentence-transformers/all-nli * Dataset: [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co./datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) * Size: 1,000 evaluation samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------| | Two women are embracing while holding to go packages. | Two woman are holding packages. | The men are fighting outside a deli. | | Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. | Two kids in numbered jerseys wash their hands. | Two kids in jackets walk to school. | | A man selling donuts to a customer during a world exhibition event held in the city of Angeles | A man selling donuts to a customer. | A woman drinks her coffee in a small cafe. | * Loss: [CachedMultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy | |:-----:|:----:|:-------------:|:------:|:------------------------:|:-------------------------:| | 0 | 0 | - | - | 0.541 | - | | 0.016 | 100 | 3.5308 | 3.1817 | 0.558 | - | | 0.032 | 200 | 3.2784 | 3.0406 | 0.597 | - | | 0.048 | 300 | 3.113 | 2.7572 | 0.635 | - | | 0.064 | 400 | 2.8296 | 2.4646 | 0.68 | - | | 0.08 | 500 | 2.631 | 2.3583 | 0.676 | - | | 0.096 | 600 | 2.3247 | 2.1394 | 0.706 | - | | 0.112 | 700 | 2.2211 | 2.0201 | 0.711 | - | | 0.128 | 800 | 2.1263 | 1.9560 | 0.757 | - | | 0.144 | 900 | 2.2105 | 1.9074 | 0.748 | - | | 0.16 | 1000 | 2.0637 | 1.9289 | 0.728 | - | | 0.176 | 1100 | 2.1772 | 1.8796 | 0.741 | - | | 0.192 | 1200 | 2.1518 | 1.8346 | 0.761 | - | | 0.208 | 1300 | 1.728 | 1.8213 | 0.765 | - | | 0.224 | 1400 | 1.8101 | 1.6321 | 0.772 | - | | 0.24 | 1500 | 1.7516 | 1.5669 | 0.793 | - | | 0.256 | 1600 | 1.4988 | 1.5538 | 0.8 | - | | 0.272 | 1700 | 1.6695 | 1.5462 | 0.803 | - | | 0.288 | 1800 | 1.5971 | 1.5499 | 0.783 | - | | 0.304 | 1900 | 1.5614 | 1.5047 | 0.788 | - | | 0.32 | 2000 | 1.522 | 1.4957 | 0.794 | - | | 0.336 | 2100 | 1.3624 | 1.4153 | 0.814 | - | | 0.352 | 2200 | 1.4773 | 1.4169 | 0.809 | - | | 0.368 | 2300 | 1.6066 | 1.3697 | 0.813 | - | | 0.384 | 2400 | 1.5106 | 1.3203 | 0.819 | - | | 0.4 | 2500 | 1.4783 | 1.3417 | 0.817 | - | | 0.416 | 2600 | 1.3696 | 1.2650 | 0.824 | - | | 0.432 | 2700 | 1.5115 | 1.2779 | 0.829 | - | | 0.448 | 2800 | 1.4834 | 1.2668 | 0.834 | - | | 0.464 | 2900 | 1.4823 | 1.2621 | 0.836 | - | | 0.48 | 3000 | 1.4163 | 1.2465 | 0.837 | - | | 0.496 | 3100 | 1.4232 | 1.2475 | 0.837 | - | | 0.512 | 3200 | 1.2193 | 1.1975 | 0.838 | - | | 0.528 | 3300 | 1.2569 | 1.1816 | 0.838 | - | | 0.544 | 3400 | 1.2988 | 1.1936 | 0.839 | - | | 0.56 | 3500 | 1.5068 | 1.2213 | 0.835 | - | | 0.576 | 3600 | 1.3022 | 1.1799 | 0.842 | - | | 0.592 | 3700 | 1.3823 | 1.1910 | 0.831 | - | | 0.608 | 3800 | 1.4224 | 1.1786 | 0.834 | - | | 0.624 | 3900 | 1.3765 | 1.1541 | 0.843 | - | | 0.64 | 4000 | 1.4987 | 1.1365 | 0.844 | - | | 0.656 | 4100 | 1.7525 | 1.1394 | 0.843 | - | | 0.672 | 4200 | 1.6013 | 1.1178 | 0.841 | - | | 0.688 | 4300 | 1.3326 | 1.0959 | 0.846 | - | | 0.704 | 4400 | 1.355 | 1.0757 | 0.848 | - | | 0.72 | 4500 | 1.2834 | 1.0681 | 0.846 | - | | 0.736 | 4600 | 1.2939 | 1.0696 | 0.85 | - | | 0.752 | 4700 | 1.4069 | 1.0645 | 0.848 | - | | 0.768 | 4800 | 1.4503 | 1.0609 | 0.849 | - | | 0.784 | 4900 | 1.2833 | 1.0587 | 0.847 | - | | 0.8 | 5000 | 1.3321 | 1.0563 | 0.849 | - | | 0.816 | 5100 | 1.3006 | 1.0539 | 0.847 | - | | 0.832 | 5200 | 1.4332 | 1.0527 | 0.847 | - | | 0.848 | 5300 | 1.3101 | 1.0505 | 0.848 | - | | 0.864 | 5400 | 1.3658 | 1.0523 | 0.849 | - | | 0.88 | 5500 | 1.353 | 1.0520 | 0.849 | - | | 0.896 | 5600 | 1.2429 | 1.0521 | 0.848 | - | | 0.912 | 5700 | 1.3512 | 1.0505 | 0.848 | - | | 0.928 | 5800 | 1.2995 | 1.0501 | 0.848 | - | | 0.944 | 5900 | 1.3514 | 1.0491 | 0.849 | - | | 0.96 | 6000 | 1.3976 | 1.0490 | 0.848 | - | | 0.976 | 6100 | 1.2112 | 1.0487 | 0.848 | - | | 0.992 | 6200 | 0.0033 | 1.0492 | 0.849 | - | | 1.0 | 6250 | - | - | - | 0.839 | ### Framework Versions - Python: 3.9.10 - Sentence Transformers: 3.0.0 - Transformers: 4.41.2 - PyTorch: 2.3.0+cu121 - Accelerate: 0.26.1 - Datasets: 2.16.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CachedMultipleNegativesRankingLoss ```bibtex @misc{gao2021scaling, title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup}, author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan}, year={2021}, eprint={2101.06983}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```