File size: 2,943 Bytes
26596a8 9e94239 26596a8 6e8c0eb 468d2cd 6e8c0eb abc4918 468d2cd fceed4d 468d2cd 0a5c42c 468d2cd f602434 468d2cd 6287517 5e83505 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
language: en
thumbnail: https://huggingface.co./front/thumbnails/microsoft.png
tags:
- text-classification
license: mit
---
# XtremeDistilTransformers for Distilling Massive Neural Networks
XtremeDistilTransformers is a distilled task-agnostic transformer model that leverages task transfer for learning a small universal model that can be applied to arbitrary tasks and languages as outlined in the paper [XtremeDistilTransformers: Task Transfer for Task-agnostic Distillation](https://arxiv.org/abs/2106.04563).
We leverage task transfer combined with multi-task distillation techniques from the papers [XtremeDistil: Multi-stage Distillation for Massive Multilingual Models](https://www.aclweb.org/anthology/2020.acl-main.202.pdf) and [MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers](https://proceedings.neurips.cc/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf) with the following [Github code](https://github.com/microsoft/xtreme-distil-transformers).
This l6-h384 checkpoint with **6** layers, **384** hidden size, **12** attention heads corresponds to **22 million** parameters with **5.3x** speedup over BERT-base.
Other available checkpoints: [xtremedistil-l6-h256-uncased](https://huggingface.co./microsoft/xtremedistil-l6-h256-uncased) and [xtremedistil-l12-h384-uncased](https://huggingface.co./microsoft/xtremedistil-l12-h384-uncased)
The following table shows the results on GLUE dev set and SQuAD-v2.
| Models | #Params | Speedup | MNLI | QNLI | QQP | RTE | SST | MRPC | SQUAD2 | Avg |
|----------------|--------|---------|------|------|------|------|------|------|--------|-------|
| BERT | 109 | 1x | 84.5 | 91.7 | 91.3 | 68.6 | 93.2 | 87.3 | 76.8 | 84.8 |
| DistilBERT | 66 | 2x | 82.2 | 89.2 | 88.5 | 59.9 | 91.3 | 87.5 | 70.7 | 81.3 |
| TinyBERT | 66 | 2x | 83.5 | 90.5 | 90.6 | 72.2 | 91.6 | 88.4 | 73.1 | 84.3 |
| MiniLM | 66 | 2x | 84.0 | 91.0 | 91.0 | 71.5 | 92.0 | 88.4 | 76.4 | 84.9 |
| MiniLM | 22 | 5.3x | 82.8 | 90.3 | 90.6 | 68.9 | 91.3 | 86.6 | 72.9 | 83.3 |
| XtremeDistil-l6-h256 | 13 | 8.7x | 83.9 | 89.5 | 90.6 | 80.1 | 91.2 | 90.0 | 74.1 | 85.6 |
| XtremeDistil-l6-h384 | 22 | 5.3x | 85.4 | 90.3 | 91.0 | 80.9 | 92.3 | 90.0 | 76.6 | 86.6 |
| XtremeDistil-l12-h384 | 33 | 2.7x | 87.2 | 91.9 | 91.3 | 85.6 | 93.1 | 90.4 | 80.2 | 88.5 |
Tested with `tensorflow 2.3.1, transformers 4.1.1, torch 1.6.0`
If you use this checkpoint in your work, please cite:
``` latex
@misc{mukherjee2021xtremedistiltransformers,
title={XtremeDistilTransformers: Task Transfer for Task-agnostic Distillation},
author={Subhabrata Mukherjee and Ahmed Hassan Awadallah and Jianfeng Gao},
year={2021},
eprint={2106.04563},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|