|
import re |
|
import torch |
|
import requests |
|
from PIL import Image, ImageDraw |
|
from transformers import AutoProcessor, Kosmos2_5ForConditionalGeneration |
|
|
|
repo = "microsoft/kosmos-2.5" |
|
device = "cuda:0" |
|
dtype = torch.bfloat16 |
|
model = Kosmos2_5ForConditionalGeneration.from_pretrained(repo, device_map=device, torch_dtype=dtype) |
|
processor = AutoProcessor.from_pretrained(repo) |
|
|
|
|
|
url = "https://huggingface.co./microsoft/kosmos-2.5/blob/main/receipt_00008.png" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
prompt = "<md>" |
|
inputs = processor(text=prompt, images=image, return_tensors="pt") |
|
|
|
height, width = inputs.pop("height"), inputs.pop("width") |
|
raw_width, raw_height = image.size |
|
scale_height = raw_height / height |
|
scale_width = raw_width / width |
|
|
|
inputs = {k: v.to(device) if v is not None else None for k, v in inputs.items()} |
|
inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype) |
|
generated_ids = model.generate( |
|
**inputs, |
|
max_new_tokens=1024, |
|
) |
|
|
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) |
|
print(generated_text[0]) |