--- tags: - dit - vision - image-classification datasets: - rvl_cdip widget: - src: https://huggingface.co./microsoft/dit-base-finetuned-rvlcdip/resolve/main/coca_cola_advertisement.png example_title: Advertisement - src: https://huggingface.co./microsoft/dit-base-finetuned-rvlcdip/resolve/main/scientific_publication.png example_title: Scientific publication --- # Document Image Transformer (base-sized model) Document Image Transformer (DiT) model pre-trained on IIT-CDIP (Lewis et al., 2006), a dataset that includes 42 million document images and fine-tuned on [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/), a dataset consisting of 400,000 grayscale images in 16 classes, with 25,000 images per class. It was introduced in the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Li et al. and first released in [this repository](https://github.com/microsoft/unilm/tree/master/dit). Note that DiT is identical to the architecture of [BEiT](https://huggingface.co./docs/transformers/model_doc/beit). Disclaimer: The team releasing DiT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Document Image Transformer (DiT) is a transformer encoder model (BERT-like) pre-trained on a large collection of images in a self-supervised fashion. The pre-training objective for the model is to predict visual tokens from the encoder of a discrete VAE (dVAE), based on masked patches. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled document images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. ## Intended uses & limitations You can use the raw model for encoding document images into a vector space, but it's mostly meant to be fine-tuned on tasks like document image classification, table detection or document layout analysis. See the [model hub](https://huggingface.co./models?search=microsoft/dit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model in PyTorch: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification import torch from PIL import Image image = Image.open('path_to_your_document_image').convert('RGB') processor = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip") model = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 16 RVL-CDIP classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` ### BibTeX entry and citation info ```bibtex @article{Lewis2006BuildingAT, title={Building a test collection for complex document information processing}, author={David D. Lewis and Gady Agam and Shlomo Engelson Argamon and Ophir Frieder and David A. Grossman and Jefferson Heard}, journal={Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval}, year={2006} } ```