File size: 2,859 Bytes
ff3ef10 9cd17f4 0b14b48 ff3ef10 09dede5 8869586 9cd17f4 ff3ef10 c29fd30 8711b9e c29fd30 ff3ef10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
language: en
tags:
- deberta
- deberta-v3
thumbnail: https://huggingface.co./front/thumbnails/microsoft.png
license: mit
---
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
In DeBERTa V3, we replaced the MLM objective with the RTD(Replaced Token Detection) objective introduced by ELECTRA for pre-training, as well as some innovations to be introduced in our upcoming paper. Compared to DeBERTa-V2, our V3 version significantly improves the model performance in downstream tasks. You can find a simple introduction about the model from the appendix A11 in our original [paper](https://arxiv.org/abs/2006.03654), but we will provide more details in a separate write-up.
The DeBERTa V3 large model comes with 24 layers and a hidden size of 1024 . Its total parameter number is 418M since we use a vocabulary containing 128K tokens which introduce 131M parameters in the Embedding layer. This model was trained using the 160GB data as DeBERTa V2.
#### Fine-tuning on NLU tasks
We present the dev results on SQuAD 1.1/2.0 and MNLI tasks.
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m |
|-------------------|-----------|-----------|--------|
| RoBERTa-large | 94.6/88.9 | 89.4/86.5 | 90.2 |
| XLNet-large | 95.1/89.7 | 90.6/87.9 | 90.8 |
| DeBERTa-large | -/- | 90.7/88.0 | 91.3 |
| **DeBERTa-v3-large** | -/- | 91.5/89.0 | **92.0** |
#### Fine-tuning with HF transformers
```bash
#!/bin/bash
cd transformers/examples/pytorch/text-classification/
pip install datasets
export TASK_NAME=mnli
output_dir="ds_results"
num_gpus=8
batch_size=8
python -m torch.distributed.launch --nproc_per_node=${num_gpus} \
run_glue.py \
--model_name_or_path microsoft/deberta-v3-large \
--task_name $TASK_NAME \
--do_train \
--do_eval \
--evaluation_strategy steps \
--max_seq_length 256 \
--warmup_steps 50 \
--per_device_train_batch_size ${batch_size} \
--learning_rate 6e-6 \
--num_train_epochs 2 \
--output_dir $output_dir \
--overwrite_output_dir \
--logging_steps 1000 \
--logging_dir $output_dir
```
### Citation
If you find DeBERTa useful for your work, please cite the following paper:
``` latex
@inproceedings{
he2021deberta,
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=XPZIaotutsD}
}
```
|