Upload Godel_finetunning.ipynb
Browse filesA jupyter notebook describing how to finetunne Godel on your custom dataset. Godel is a chatbot with large model consisting about 0.75 B trainable parameters. It's a cheat sheet to fine tunning so that you can get a head start and don't have to waste your time as I did. Cheers.
- Godel_finetunning.ipynb +679 -0
Godel_finetunning.ipynb
ADDED
@@ -0,0 +1,679 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {
|
7 |
+
"id": "cUzq1tXyk5Ga"
|
8 |
+
},
|
9 |
+
"outputs": [],
|
10 |
+
"source": [
|
11 |
+
"# !pip install transformers\n",
|
12 |
+
"# !pip install torch\n",
|
13 |
+
"# !pip install accelerate -U"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "markdown",
|
18 |
+
"metadata": {},
|
19 |
+
"source": [
|
20 |
+
"#### Below is the funtion to find trainable parameters of the Model. "
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 5,
|
26 |
+
"metadata": {},
|
27 |
+
"outputs": [
|
28 |
+
{
|
29 |
+
"data": {
|
30 |
+
"text/plain": [
|
31 |
+
"737641472"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
"execution_count": 5,
|
35 |
+
"metadata": {},
|
36 |
+
"output_type": "execute_result"
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"source": [
|
40 |
+
"sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"execution_count": 1,
|
46 |
+
"metadata": {
|
47 |
+
"execution": {
|
48 |
+
"iopub.execute_input": "2023-09-12T05:38:18.853671Z",
|
49 |
+
"iopub.status.busy": "2023-09-12T05:38:18.853483Z",
|
50 |
+
"iopub.status.idle": "2023-09-12T05:38:20.511295Z",
|
51 |
+
"shell.execute_reply": "2023-09-12T05:38:20.510634Z",
|
52 |
+
"shell.execute_reply.started": "2023-09-12T05:38:18.853650Z"
|
53 |
+
},
|
54 |
+
"id": "_GqhK_n0JWC4"
|
55 |
+
},
|
56 |
+
"outputs": [],
|
57 |
+
"source": [
|
58 |
+
"import pandas as pd\n",
|
59 |
+
"import json\n",
|
60 |
+
"import torch\n"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"execution_count": 2,
|
66 |
+
"metadata": {
|
67 |
+
"execution": {
|
68 |
+
"iopub.execute_input": "2023-09-12T05:38:21.617293Z",
|
69 |
+
"iopub.status.busy": "2023-09-12T05:38:21.616915Z",
|
70 |
+
"iopub.status.idle": "2023-09-12T05:38:34.474328Z",
|
71 |
+
"shell.execute_reply": "2023-09-12T05:38:34.473820Z",
|
72 |
+
"shell.execute_reply.started": "2023-09-12T05:38:21.617267Z"
|
73 |
+
},
|
74 |
+
"id": "FVBPeMW99Z7G"
|
75 |
+
},
|
76 |
+
"outputs": [],
|
77 |
+
"source": [
|
78 |
+
"\n",
|
79 |
+
"from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AdamW, TrainingArguments, Trainer\n",
|
80 |
+
"from torch.utils.data import TensorDataset\n",
|
81 |
+
"\n",
|
82 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"microsoft/GODEL-v1_1-large-seq2seq\", padding_side='right', truncation_side='left')\n"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "code",
|
87 |
+
"execution_count": 5,
|
88 |
+
"metadata": {
|
89 |
+
"execution": {
|
90 |
+
"iopub.execute_input": "2023-09-12T05:38:37.343460Z",
|
91 |
+
"iopub.status.busy": "2023-09-12T05:38:37.343116Z",
|
92 |
+
"iopub.status.idle": "2023-09-12T05:38:43.015610Z",
|
93 |
+
"shell.execute_reply": "2023-09-12T05:38:43.015175Z",
|
94 |
+
"shell.execute_reply.started": "2023-09-12T05:38:37.343436Z"
|
95 |
+
},
|
96 |
+
"id": "Bee7KFF2MWQ_"
|
97 |
+
},
|
98 |
+
"outputs": [],
|
99 |
+
"source": [
|
100 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(\"microsoft/GODEL-v1_1-large-seq2seq\").to('cuda')"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "markdown",
|
105 |
+
"metadata": {},
|
106 |
+
"source": [
|
107 |
+
"#### Here the data preprocessed, Note that the data loaded to this model is in the following format. It is in the form of mulit-turn conversation between two persons.\n",
|
108 |
+
"#### [[person1, person2, person1, person2, person1, person2],\n",
|
109 |
+
"#### [person1, person2, person1, person2, person1, person2],\n",
|
110 |
+
"#### [person1, person2, person1, person2, person1, person2],\n",
|
111 |
+
"#### [person1, person2, person1, person2, person1, person2],\n",
|
112 |
+
"#### [person1, person2, person1, person2, person1, person2]]"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": 6,
|
118 |
+
"metadata": {
|
119 |
+
"execution": {
|
120 |
+
"iopub.execute_input": "2023-09-12T05:38:44.400644Z",
|
121 |
+
"iopub.status.busy": "2023-09-12T05:38:44.400155Z",
|
122 |
+
"iopub.status.idle": "2023-09-12T05:38:44.405992Z",
|
123 |
+
"shell.execute_reply": "2023-09-12T05:38:44.405263Z",
|
124 |
+
"shell.execute_reply.started": "2023-09-12T05:38:44.400620Z"
|
125 |
+
},
|
126 |
+
"id": "Mjd9Us2Sr6Hq"
|
127 |
+
},
|
128 |
+
"outputs": [],
|
129 |
+
"source": [
|
130 |
+
"def read_data_from_txt(file_path):\n",
|
131 |
+
" try:\n",
|
132 |
+
" with open(file_path, 'rb') as file:\n",
|
133 |
+
" content = file.readlines()\n",
|
134 |
+
" content = [_.decode('utf-8').strip() for _ in content]\n",
|
135 |
+
" content = '\\n'.join(content)\n",
|
136 |
+
"\n",
|
137 |
+
" # Split the content based on the delimiter (triple single quotes)\n",
|
138 |
+
" data_list = content.split(\"''','''\")\n",
|
139 |
+
"\n",
|
140 |
+
" # Remove empty elements from the list\n",
|
141 |
+
" data_list = [section.strip(\"'''\") for section in data_list]\n",
|
142 |
+
" data_list = [_.strip().split('\\n') for _ in data_list]\n",
|
143 |
+
"\n",
|
144 |
+
" return data_list\n",
|
145 |
+
" except FileNotFoundError:\n",
|
146 |
+
" print(f\"File '{file_path}' not found.\")\n",
|
147 |
+
" return None\n",
|
148 |
+
" except Exception as e:\n",
|
149 |
+
" print(f\"Error occurred while reading the file: {e}\")\n",
|
150 |
+
" return None\n"
|
151 |
+
]
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "code",
|
155 |
+
"execution_count": 7,
|
156 |
+
"metadata": {
|
157 |
+
"execution": {
|
158 |
+
"iopub.execute_input": "2023-09-12T05:38:45.632305Z",
|
159 |
+
"iopub.status.busy": "2023-09-12T05:38:45.631923Z",
|
160 |
+
"iopub.status.idle": "2023-09-12T05:38:45.637764Z",
|
161 |
+
"shell.execute_reply": "2023-09-12T05:38:45.637089Z",
|
162 |
+
"shell.execute_reply.started": "2023-09-12T05:38:45.632280Z"
|
163 |
+
},
|
164 |
+
"id": "N4WTX9MfKTBX"
|
165 |
+
},
|
166 |
+
"outputs": [],
|
167 |
+
"source": [
|
168 |
+
"\n",
|
169 |
+
"file_path = 'your_data.txt'\n",
|
170 |
+
"data_list = read_data_from_txt(file_path)\n"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": 8,
|
176 |
+
"metadata": {
|
177 |
+
"execution": {
|
178 |
+
"iopub.execute_input": "2023-09-12T05:38:46.529136Z",
|
179 |
+
"iopub.status.busy": "2023-09-12T05:38:46.528726Z",
|
180 |
+
"iopub.status.idle": "2023-09-12T05:38:46.532045Z",
|
181 |
+
"shell.execute_reply": "2023-09-12T05:38:46.531505Z",
|
182 |
+
"shell.execute_reply.started": "2023-09-12T05:38:46.529112Z"
|
183 |
+
}
|
184 |
+
},
|
185 |
+
"outputs": [],
|
186 |
+
"source": [
|
187 |
+
"training_data = data_list\n"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "code",
|
192 |
+
"execution_count": 10,
|
193 |
+
"metadata": {
|
194 |
+
"execution": {
|
195 |
+
"iopub.execute_input": "2023-09-12T05:38:52.640741Z",
|
196 |
+
"iopub.status.busy": "2023-09-12T05:38:52.639972Z",
|
197 |
+
"iopub.status.idle": "2023-09-12T05:38:52.646245Z",
|
198 |
+
"shell.execute_reply": "2023-09-12T05:38:52.645854Z",
|
199 |
+
"shell.execute_reply.started": "2023-09-12T05:38:52.640704Z"
|
200 |
+
},
|
201 |
+
"id": "fxgyXq64Q1GP"
|
202 |
+
},
|
203 |
+
"outputs": [],
|
204 |
+
"source": [
|
205 |
+
"\n",
|
206 |
+
"def create_input_output(data_list):\n",
|
207 |
+
" input_data = []\n",
|
208 |
+
" output_data = []\n",
|
209 |
+
" instructions = \"You are Woice AI. Answer the queires relevant to rev9 Solutions only. If not relevant, asnwer 'I applogize, I can't answer your question as I am just an AI chatbot.'\"\n",
|
210 |
+
" knowledge = \"\"\n",
|
211 |
+
" for lines in data_list:\n",
|
212 |
+
" for i in range(1, len(lines), 2):\n",
|
213 |
+
" input_lines = lines[:i]\n",
|
214 |
+
" input_text = ' EOS '.join(input_lines).strip()\n",
|
215 |
+
" input_data.append(f'[INSTRUCTION] {instructions} [CONTEXT] ' + input_text )\n",
|
216 |
+
" output_data.append(lines[i] + ' EOS')\n",
|
217 |
+
" return input_data, output_data\n"
|
218 |
+
]
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"cell_type": "code",
|
222 |
+
"execution_count": 11,
|
223 |
+
"metadata": {
|
224 |
+
"execution": {
|
225 |
+
"iopub.execute_input": "2023-09-12T05:38:54.366890Z",
|
226 |
+
"iopub.status.busy": "2023-09-12T05:38:54.366544Z",
|
227 |
+
"iopub.status.idle": "2023-09-12T05:38:54.371721Z",
|
228 |
+
"shell.execute_reply": "2023-09-12T05:38:54.371144Z",
|
229 |
+
"shell.execute_reply.started": "2023-09-12T05:38:54.366866Z"
|
230 |
+
}
|
231 |
+
},
|
232 |
+
"outputs": [],
|
233 |
+
"source": [
|
234 |
+
"\n",
|
235 |
+
"train_input, train_output = create_input_output(training_data)"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "code",
|
240 |
+
"execution_count": 13,
|
241 |
+
"metadata": {
|
242 |
+
"execution": {
|
243 |
+
"iopub.execute_input": "2023-09-12T05:39:10.350357Z",
|
244 |
+
"iopub.status.busy": "2023-09-12T05:39:10.350006Z",
|
245 |
+
"iopub.status.idle": "2023-09-12T05:39:10.354580Z",
|
246 |
+
"shell.execute_reply": "2023-09-12T05:39:10.353920Z",
|
247 |
+
"shell.execute_reply.started": "2023-09-12T05:39:10.350333Z"
|
248 |
+
},
|
249 |
+
"id": "VyrEDi_G9NfY"
|
250 |
+
},
|
251 |
+
"outputs": [],
|
252 |
+
"source": [
|
253 |
+
"def generation_tokenized_dataset(input, output):\n",
|
254 |
+
" \n",
|
255 |
+
" input_tokens = tokenizer(input, padding=\"longest\", truncation=True, return_tensors=\"pt\", max_length=768)\n",
|
256 |
+
" output_tokens = tokenizer(output, padding=\"longest\", truncation=True, return_tensors=\"pt\", max_length=768)\n",
|
257 |
+
" dataset = TensorDataset(input_tokens.input_ids, input_tokens.attention_mask,\n",
|
258 |
+
" output_tokens.input_ids, output_tokens.attention_mask)\n",
|
259 |
+
"\n",
|
260 |
+
" return dataset\n"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"cell_type": "code",
|
265 |
+
"execution_count": 14,
|
266 |
+
"metadata": {
|
267 |
+
"execution": {
|
268 |
+
"iopub.execute_input": "2023-09-12T05:39:11.118317Z",
|
269 |
+
"iopub.status.busy": "2023-09-12T05:39:11.117702Z",
|
270 |
+
"iopub.status.idle": "2023-09-12T05:39:11.459556Z",
|
271 |
+
"shell.execute_reply": "2023-09-12T05:39:11.459151Z",
|
272 |
+
"shell.execute_reply.started": "2023-09-12T05:39:11.118292Z"
|
273 |
+
},
|
274 |
+
"id": "Q0IjwcBPfVEm"
|
275 |
+
},
|
276 |
+
"outputs": [],
|
277 |
+
"source": [
|
278 |
+
"train_set = generation_tokenized_dataset(train_input, train_output)\n"
|
279 |
+
]
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"cell_type": "code",
|
283 |
+
"execution_count": 15,
|
284 |
+
"metadata": {
|
285 |
+
"execution": {
|
286 |
+
"iopub.execute_input": "2023-09-12T05:39:12.526146Z",
|
287 |
+
"iopub.status.busy": "2023-09-12T05:39:12.525838Z",
|
288 |
+
"iopub.status.idle": "2023-09-12T05:39:12.530858Z",
|
289 |
+
"shell.execute_reply": "2023-09-12T05:39:12.530178Z",
|
290 |
+
"shell.execute_reply.started": "2023-09-12T05:39:12.526123Z"
|
291 |
+
},
|
292 |
+
"id": "hhz3a3j2Sa0P"
|
293 |
+
},
|
294 |
+
"outputs": [],
|
295 |
+
"source": [
|
296 |
+
"class CustomDataCollator:\n",
|
297 |
+
" def __call__(self, features):\n",
|
298 |
+
" input_ids = torch.stack([f[0] for f in features])\n",
|
299 |
+
" attention_mask = torch.stack([f[1] for f in features])\n",
|
300 |
+
" labels = torch.stack([f[2] for f in features])\n",
|
301 |
+
"\n",
|
302 |
+
" return {\n",
|
303 |
+
" 'input_ids': input_ids,\n",
|
304 |
+
" 'attention_mask': attention_mask,\n",
|
305 |
+
" 'labels': labels\n",
|
306 |
+
" }\n"
|
307 |
+
]
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"cell_type": "code",
|
311 |
+
"execution_count": null,
|
312 |
+
"metadata": {
|
313 |
+
"execution": {
|
314 |
+
"iopub.execute_input": "2023-09-12T05:39:13.295224Z",
|
315 |
+
"iopub.status.busy": "2023-09-12T05:39:13.294666Z",
|
316 |
+
"iopub.status.idle": "2023-09-12T05:39:13.307836Z",
|
317 |
+
"shell.execute_reply": "2023-09-12T05:39:13.307503Z",
|
318 |
+
"shell.execute_reply.started": "2023-09-12T05:39:13.295200Z"
|
319 |
+
},
|
320 |
+
"id": "CN5JWUqmS8wM"
|
321 |
+
},
|
322 |
+
"outputs": [],
|
323 |
+
"source": [
|
324 |
+
"import torch\n",
|
325 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
326 |
+
"model.to(device)\n",
|
327 |
+
"optimizer = AdamW(model.parameters(), lr=1e-5)"
|
328 |
+
]
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"cell_type": "code",
|
332 |
+
"execution_count": 17,
|
333 |
+
"metadata": {
|
334 |
+
"execution": {
|
335 |
+
"iopub.execute_input": "2023-09-12T05:39:14.655823Z",
|
336 |
+
"iopub.status.busy": "2023-09-12T05:39:14.655033Z",
|
337 |
+
"iopub.status.idle": "2023-09-12T05:39:14.659506Z",
|
338 |
+
"shell.execute_reply": "2023-09-12T05:39:14.658681Z",
|
339 |
+
"shell.execute_reply.started": "2023-09-12T05:39:14.655786Z"
|
340 |
+
},
|
341 |
+
"id": "zfsQaXAEWZLD"
|
342 |
+
},
|
343 |
+
"outputs": [],
|
344 |
+
"source": [
|
345 |
+
"from transformers import EarlyStoppingCallback"
|
346 |
+
]
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"cell_type": "code",
|
350 |
+
"execution_count": 18,
|
351 |
+
"metadata": {
|
352 |
+
"execution": {
|
353 |
+
"iopub.execute_input": "2023-09-12T05:39:15.342624Z",
|
354 |
+
"iopub.status.busy": "2023-09-12T05:39:15.342125Z",
|
355 |
+
"iopub.status.idle": "2023-09-12T05:39:15.345769Z",
|
356 |
+
"shell.execute_reply": "2023-09-12T05:39:15.345059Z",
|
357 |
+
"shell.execute_reply.started": "2023-09-12T05:39:15.342600Z"
|
358 |
+
},
|
359 |
+
"id": "zd7CDp3xXVMp"
|
360 |
+
},
|
361 |
+
"outputs": [],
|
362 |
+
"source": [
|
363 |
+
"from transformers import get_linear_schedule_with_warmup"
|
364 |
+
]
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"cell_type": "code",
|
368 |
+
"execution_count": 17,
|
369 |
+
"metadata": {
|
370 |
+
"execution": {
|
371 |
+
"iopub.execute_input": "2023-09-11T11:42:31.617024Z",
|
372 |
+
"iopub.status.busy": "2023-09-11T11:42:31.616702Z",
|
373 |
+
"iopub.status.idle": "2023-09-11T11:42:31.620157Z",
|
374 |
+
"shell.execute_reply": "2023-09-11T11:42:31.619476Z",
|
375 |
+
"shell.execute_reply.started": "2023-09-11T11:42:31.617001Z"
|
376 |
+
},
|
377 |
+
"id": "rcMlWRgMWcOA"
|
378 |
+
},
|
379 |
+
"outputs": [],
|
380 |
+
"source": [
|
381 |
+
"callbacks = [EarlyStoppingCallback(early_stopping_patience=4)]"
|
382 |
+
]
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"cell_type": "code",
|
386 |
+
"execution_count": 19,
|
387 |
+
"metadata": {
|
388 |
+
"execution": {
|
389 |
+
"iopub.execute_input": "2023-09-12T05:39:17.359370Z",
|
390 |
+
"iopub.status.busy": "2023-09-12T05:39:17.358967Z",
|
391 |
+
"iopub.status.idle": "2023-09-12T05:39:17.362640Z",
|
392 |
+
"shell.execute_reply": "2023-09-12T05:39:17.362096Z",
|
393 |
+
"shell.execute_reply.started": "2023-09-12T05:39:17.359346Z"
|
394 |
+
},
|
395 |
+
"id": "WgGbwECpXXwd"
|
396 |
+
},
|
397 |
+
"outputs": [],
|
398 |
+
"source": [
|
399 |
+
"lr_scheduler = get_linear_schedule_with_warmup(optimizer=optimizer,\n",
|
400 |
+
" num_warmup_steps=300,\n",
|
401 |
+
" num_training_steps=1200)"
|
402 |
+
]
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"cell_type": "code",
|
406 |
+
"execution_count": 20,
|
407 |
+
"metadata": {
|
408 |
+
"execution": {
|
409 |
+
"iopub.execute_input": "2023-09-12T05:39:26.782170Z",
|
410 |
+
"iopub.status.busy": "2023-09-12T05:39:26.781759Z",
|
411 |
+
"iopub.status.idle": "2023-09-12T05:39:26.788708Z",
|
412 |
+
"shell.execute_reply": "2023-09-12T05:39:26.788007Z",
|
413 |
+
"shell.execute_reply.started": "2023-09-12T05:39:26.782126Z"
|
414 |
+
},
|
415 |
+
"id": "UCpUorNtUTxJ"
|
416 |
+
},
|
417 |
+
"outputs": [],
|
418 |
+
"source": [
|
419 |
+
"training_args = TrainingArguments(\n",
|
420 |
+
" output_dir='./godel/v0.0.5',\n",
|
421 |
+
" num_train_epochs= 20,\n",
|
422 |
+
" per_device_train_batch_size=2,\n",
|
423 |
+
" warmup_steps=100,\n",
|
424 |
+
" weight_decay=0.01,\n",
|
425 |
+
" logging_dir='./godel/v0.0.5/logs',\n",
|
426 |
+
" logging_steps=50,\n",
|
427 |
+
" save_total_limit=1,\n",
|
428 |
+
" gradient_accumulation_steps=8,\n",
|
429 |
+
" learning_rate=0.001,\n",
|
430 |
+
" load_best_model_at_end=True,\n",
|
431 |
+
" metric_for_best_model='loss',\n",
|
432 |
+
" greater_is_better=False,\n",
|
433 |
+
" save_strategy='epoch',\n",
|
434 |
+
" evaluation_strategy='epoch'\n",
|
435 |
+
"\n",
|
436 |
+
")\n",
|
437 |
+
"\n",
|
438 |
+
"training_args = training_args.set_lr_scheduler(name='linear',\n",
|
439 |
+
" num_epochs=40,\n",
|
440 |
+
" warmup_steps=100)\n"
|
441 |
+
]
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"cell_type": "markdown",
|
445 |
+
"metadata": {},
|
446 |
+
"source": [
|
447 |
+
"#### Here model is evaluated and trained on the same dataset as I was short on the dataset. If you have a large dataset, split them with the desired ratio (recommended= 15:85, respectively)"
|
448 |
+
]
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"cell_type": "code",
|
452 |
+
"execution_count": 21,
|
453 |
+
"metadata": {
|
454 |
+
"execution": {
|
455 |
+
"iopub.execute_input": "2023-09-12T05:39:27.630008Z",
|
456 |
+
"iopub.status.busy": "2023-09-12T05:39:27.629250Z",
|
457 |
+
"iopub.status.idle": "2023-09-12T05:39:27.642183Z",
|
458 |
+
"shell.execute_reply": "2023-09-12T05:39:27.641782Z",
|
459 |
+
"shell.execute_reply.started": "2023-09-12T05:39:27.629973Z"
|
460 |
+
},
|
461 |
+
"id": "KxAyHTuJOBIQ"
|
462 |
+
},
|
463 |
+
"outputs": [],
|
464 |
+
"source": [
|
465 |
+
"\n",
|
466 |
+
"\n",
|
467 |
+
"trainer = Trainer(\n",
|
468 |
+
" model=model,\n",
|
469 |
+
" args=training_args,\n",
|
470 |
+
" train_dataset=train_set,\n",
|
471 |
+
" eval_dataset=train_set,\n",
|
472 |
+
" data_collator=CustomDataCollator(),\n",
|
473 |
+
" callbacks=callbacks,\n",
|
474 |
+
"\n",
|
475 |
+
")"
|
476 |
+
]
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"cell_type": "code",
|
480 |
+
"execution_count": null,
|
481 |
+
"metadata": {
|
482 |
+
"execution": {
|
483 |
+
"iopub.execute_input": "2023-09-12T05:39:29.327544Z",
|
484 |
+
"iopub.status.busy": "2023-09-12T05:39:29.327023Z",
|
485 |
+
"iopub.status.idle": "2023-09-12T09:31:20.343378Z",
|
486 |
+
"shell.execute_reply": "2023-09-12T09:31:20.343016Z",
|
487 |
+
"shell.execute_reply.started": "2023-09-12T05:39:29.327521Z"
|
488 |
+
},
|
489 |
+
"id": "brO0zCjN9U_P"
|
490 |
+
},
|
491 |
+
"outputs": [],
|
492 |
+
"source": [
|
493 |
+
"trainer.train()"
|
494 |
+
]
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"cell_type": "code",
|
498 |
+
"execution_count": 23,
|
499 |
+
"metadata": {
|
500 |
+
"execution": {
|
501 |
+
"iopub.execute_input": "2023-09-12T09:31:20.344170Z",
|
502 |
+
"iopub.status.busy": "2023-09-12T09:31:20.344000Z",
|
503 |
+
"iopub.status.idle": "2023-09-12T09:32:40.040850Z",
|
504 |
+
"shell.execute_reply": "2023-09-12T09:32:40.040458Z",
|
505 |
+
"shell.execute_reply.started": "2023-09-12T09:31:20.344157Z"
|
506 |
+
}
|
507 |
+
},
|
508 |
+
"outputs": [
|
509 |
+
{
|
510 |
+
"data": {
|
511 |
+
"text/html": [
|
512 |
+
"\n",
|
513 |
+
" <div>\n",
|
514 |
+
" \n",
|
515 |
+
" <progress value='160' max='160' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
516 |
+
" [160/160 01:19]\n",
|
517 |
+
" </div>\n",
|
518 |
+
" "
|
519 |
+
],
|
520 |
+
"text/plain": [
|
521 |
+
"<IPython.core.display.HTML object>"
|
522 |
+
]
|
523 |
+
},
|
524 |
+
"metadata": {},
|
525 |
+
"output_type": "display_data"
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"data": {
|
529 |
+
"text/plain": [
|
530 |
+
"{'eval_loss': 0.00055647426052019,\n",
|
531 |
+
" 'eval_runtime': 79.6939,\n",
|
532 |
+
" 'eval_samples_per_second': 16.036,\n",
|
533 |
+
" 'eval_steps_per_second': 2.008,\n",
|
534 |
+
" 'epoch': 39.56}"
|
535 |
+
]
|
536 |
+
},
|
537 |
+
"execution_count": 23,
|
538 |
+
"metadata": {},
|
539 |
+
"output_type": "execute_result"
|
540 |
+
}
|
541 |
+
],
|
542 |
+
"source": [
|
543 |
+
"trainer.evaluate(train_set)"
|
544 |
+
]
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"cell_type": "code",
|
548 |
+
"execution_count": 24,
|
549 |
+
"metadata": {
|
550 |
+
"execution": {
|
551 |
+
"iopub.execute_input": "2023-09-12T09:33:05.820118Z",
|
552 |
+
"iopub.status.busy": "2023-09-12T09:33:05.819417Z",
|
553 |
+
"iopub.status.idle": "2023-09-12T09:33:08.026572Z",
|
554 |
+
"shell.execute_reply": "2023-09-12T09:33:08.026139Z",
|
555 |
+
"shell.execute_reply.started": "2023-09-12T09:33:05.820082Z"
|
556 |
+
}
|
557 |
+
},
|
558 |
+
"outputs": [
|
559 |
+
{
|
560 |
+
"data": {
|
561 |
+
"text/plain": [
|
562 |
+
"('./godel/v0.0.5/tokenizer_config.json',\n",
|
563 |
+
" './godel/v0.0.5/special_tokens_map.json',\n",
|
564 |
+
" './godel/v0.0.5/tokenizer.json')"
|
565 |
+
]
|
566 |
+
},
|
567 |
+
"execution_count": 24,
|
568 |
+
"metadata": {},
|
569 |
+
"output_type": "execute_result"
|
570 |
+
}
|
571 |
+
],
|
572 |
+
"source": [
|
573 |
+
"trainer.save_model()\n",
|
574 |
+
"trainer.save_state()\n",
|
575 |
+
"tokenizer.save_pretrained(trainer.args.output_dir)"
|
576 |
+
]
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"cell_type": "markdown",
|
580 |
+
"metadata": {},
|
581 |
+
"source": [
|
582 |
+
"#### You can chat with your model here. Pass in instrucions or knowledge as you desire."
|
583 |
+
]
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"cell_type": "code",
|
587 |
+
"execution_count": 25,
|
588 |
+
"metadata": {
|
589 |
+
"execution": {
|
590 |
+
"iopub.execute_input": "2023-09-12T09:33:11.243375Z",
|
591 |
+
"iopub.status.busy": "2023-09-12T09:33:11.242979Z",
|
592 |
+
"iopub.status.idle": "2023-09-12T09:33:11.246636Z",
|
593 |
+
"shell.execute_reply": "2023-09-12T09:33:11.246071Z",
|
594 |
+
"shell.execute_reply.started": "2023-09-12T09:33:11.243351Z"
|
595 |
+
}
|
596 |
+
},
|
597 |
+
"outputs": [],
|
598 |
+
"source": [
|
599 |
+
"from time import time "
|
600 |
+
]
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"cell_type": "code",
|
604 |
+
"execution_count": 26,
|
605 |
+
"metadata": {
|
606 |
+
"execution": {
|
607 |
+
"iopub.execute_input": "2023-09-12T09:33:11.802465Z",
|
608 |
+
"iopub.status.busy": "2023-09-12T09:33:11.802159Z",
|
609 |
+
"iopub.status.idle": "2023-09-12T09:33:11.807265Z",
|
610 |
+
"shell.execute_reply": "2023-09-12T09:33:11.806707Z",
|
611 |
+
"shell.execute_reply.started": "2023-09-12T09:33:11.802443Z"
|
612 |
+
}
|
613 |
+
},
|
614 |
+
"outputs": [],
|
615 |
+
"source": [
|
616 |
+
"def generate(instruction, dialog, knowledge):\n",
|
617 |
+
" if knowledge != '':\n",
|
618 |
+
" knowledge = '[KNOWLEDGE] ' + knowledge\n",
|
619 |
+
" dialog = ' EOS '.join(dialog)\n",
|
620 |
+
" query = f\"{instruction} [CONTEXT] {dialog} {knowledge}\"\n",
|
621 |
+
" t = time()\n",
|
622 |
+
" \n",
|
623 |
+
" input_ids = tokenizer(f\"{query}\", return_tensors=\"pt\").to('cuda').input_ids\n",
|
624 |
+
" outputs = model.generate(input_ids, max_length=32102, min_length=8, top_p=0.9, do_sample=True)\n",
|
625 |
+
" output = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
|
626 |
+
" print('time:', time() - t)\n",
|
627 |
+
" return output"
|
628 |
+
]
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"cell_type": "code",
|
632 |
+
"execution_count": null,
|
633 |
+
"metadata": {
|
634 |
+
"execution": {
|
635 |
+
"iopub.execute_input": "2023-09-12T09:41:13.476490Z",
|
636 |
+
"iopub.status.busy": "2023-09-12T09:41:13.476127Z"
|
637 |
+
}
|
638 |
+
},
|
639 |
+
"outputs": [],
|
640 |
+
"source": [
|
641 |
+
"dialog = list()\n",
|
642 |
+
"while True:\n",
|
643 |
+
" query = input(\"Human: \")\n",
|
644 |
+
" dialog.append(query)\n",
|
645 |
+
" instruction = \"You are Woice AI, you are here to answer queries emphatically. Don't be rude and say vulgar words. Any thing unrelated to your training, do not answer randomly. Be polite.\"\n",
|
646 |
+
" knowledge = ''\n",
|
647 |
+
" output = \"AI: \" + generate(instruction, dialog, knowledge)\n",
|
648 |
+
" dialog.append(output)\n",
|
649 |
+
" print(output)"
|
650 |
+
]
|
651 |
+
}
|
652 |
+
],
|
653 |
+
"metadata": {
|
654 |
+
"accelerator": "GPU",
|
655 |
+
"colab": {
|
656 |
+
"gpuType": "T4",
|
657 |
+
"provenance": []
|
658 |
+
},
|
659 |
+
"kernelspec": {
|
660 |
+
"display_name": "Python 3 (ipykernel)",
|
661 |
+
"language": "python",
|
662 |
+
"name": "python3"
|
663 |
+
},
|
664 |
+
"language_info": {
|
665 |
+
"codemirror_mode": {
|
666 |
+
"name": "ipython",
|
667 |
+
"version": 3
|
668 |
+
},
|
669 |
+
"file_extension": ".py",
|
670 |
+
"mimetype": "text/x-python",
|
671 |
+
"name": "python",
|
672 |
+
"nbconvert_exporter": "python",
|
673 |
+
"pygments_lexer": "ipython3",
|
674 |
+
"version": "3.11.4"
|
675 |
+
}
|
676 |
+
},
|
677 |
+
"nbformat": 4,
|
678 |
+
"nbformat_minor": 4
|
679 |
+
}
|