--- license: apache-2.0 datasets: - coco - conceptual-caption - sbu - flickr30k - vqa - gqa - vg-qa - open-images library_name: pytorch tags: - pytorch - image-to-text --- # Model Card: VinVL for Captioning ๐Ÿ–ผ๏ธ [Microsoft's VinVL](https://github.com/microsoft/Oscar) base pretrained for **image caption generation** downstream task. # COCO Test set metrics ๐Ÿ“ˆ Table from the authors (Table 7, cross-entropy optimization, ) | Bleu-4 | METEOR | CIDEr | SPICE | |--------|--------|-------|-------| | 0.38 | 0.30 | 1.29 | 0.23 | # Usage and Installation: More info about how to install and use this model can be found here: [michelecafagna26/VinVL ](https://github.com/michelecafagna26/VinVL) # Feature extraction โ›๏ธ This model has a separate Visualbackbone used to extract features. More info about: - the model: [michelecafagna26/vinvl_vg_x152c4](https://huggingface.co./michelecafagna26/vinvl_vg_x152c4) - the usage and installation [michelecafagna26/vinvl-visualbackbone](https://github.com/michelecafagna26/vinvl-visualbackbone) # Quick start: ๐Ÿš€ ```python from transformers.pytorch_transformers import BertConfig, BertTokenizer from oscar.modeling.modeling_bert import BertForImageCaptioning from oscar.wrappers import OscarTensorizer ckpt = "path/to/the/checkpoint" device = "cuda" if torch.cuda.is_available() else "cpu" # original code config = BertConfig.from_pretrained(ckpt) tokenizer = BertTokenizer.from_pretrained(ckpt) model = BertForImageCaptioning.from_pretrained(ckpt, config=config).to(device) # This takes care of the preprocessing tensorizer = OscarTensorizer(tokenizer=tokenizer, device=device) # numpy-arrays with shape (1, num_boxes, feat_size) # feat_size is 2054 by default in VinVL visual_features = torch.from_numpy(feat_obj).to(device).unsqueeze(0) # labels are usually extracted by the features extractor labels = [['boat', 'boat', 'boat', 'bottom', 'bush', 'coat', 'deck', 'deck', 'deck', 'dock', 'hair', 'jacket']] inputs = tensorizer.encode(visual_features, labels=labels) outputs = model(**inputs) pred = tensorizer.decode(outputs) # the output looks like this: # pred = {0: [{'caption': 'a red and white boat traveling down a river next to a small boat.', 'conf': 0.7070220112800598]} ``` # Citations ๐Ÿงพ Please consider citing the original project and the VinVL paper ```BibTeX @misc{han2021image, title={Image Scene Graph Generation (SGG) Benchmark}, author={Xiaotian Han and Jianwei Yang and Houdong Hu and Lei Zhang and Jianfeng Gao and Pengchuan Zhang}, year={2021}, eprint={2107.12604}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```BibTeX @inproceedings{zhang2021vinvl, title={Vinvl: Revisiting visual representations in vision-language models}, author={Zhang, Pengchuan and Li, Xiujun and Hu, Xiaowei and Yang, Jianwei and Zhang, Lei and Wang, Lijuan and Choi, Yejin and Gao, Jianfeng}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={5579--5588}, year={2021} } ```