--- language: - en license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: BANG - v2 (EN) results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Radio-Modified Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: en split: test args: 'config: en, split: test' metrics: - name: Wer type: wer value: 20.561047043748857 --- # BANG - v2 (EN) This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the Radio-Modified Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2650 - Wer: 20.5610 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.7709 | 0.25 | 1000 | 0.6383 | 35.6607 | | 0.4424 | 1.2443 | 2000 | 0.4248 | 26.8037 | | 0.2823 | 2.2385 | 3000 | 0.3117 | 22.4425 | | 0.2429 | 3.2328 | 4000 | 0.2650 | 20.5610 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1