--- license: cc base_model: joelniklaus/legal-swiss-roberta-large tags: - generated_from_trainer datasets: - swiss_judgment_prediction metrics: - accuracy model-index: - name: fine_tuned_model_on_SJP_dataset_de_balanced_2048_tokens results: - task: name: Text Classification type: text-classification dataset: name: swiss_judgment_prediction type: swiss_judgment_prediction config: de split: test args: de metrics: - name: Accuracy type: accuracy value: 0.8030848329048843 --- # fine_tuned_model_on_SJP_dataset_de_balanced_2048_tokens This model is a fine-tuned version of [joelniklaus/legal-swiss-roberta-large](https://huggingface.co./joelniklaus/legal-swiss-roberta-large) on the swiss_judgment_prediction dataset. It achieves the following results on the evaluation set: - Loss: 0.6456 - Accuracy: 0.8031 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6562 | 1.0 | 8865 | 0.6456 | 0.8031 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu118 - Datasets 2.17.0 - Tokenizers 0.15.1