--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: weather_classification_ViT results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9679266895761741 - name: Precision type: precision value: 0.9679235596755258 - name: Recall type: recall value: 0.9679266895761741 - name: F1 type: f1 value: 0.9678827379290899 --- # weather_classification_ViT This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1268 - Accuracy: 0.9679 - Precision: 0.9679 - Recall: 0.9679 - F1: 0.9679 - Auc: 0.9974 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | 0.2811 | 0.2288 | 100 | 0.3139 | 0.8958 | 0.9147 | 0.8958 | 0.8970 | 0.9903 | | 0.1396 | 0.4577 | 200 | 0.2454 | 0.9278 | 0.9307 | 0.9278 | 0.9282 | 0.9919 | | 0.3761 | 0.6865 | 300 | 0.2952 | 0.9072 | 0.9117 | 0.9072 | 0.9071 | 0.9889 | | 0.2365 | 0.9153 | 400 | 0.1797 | 0.9444 | 0.9447 | 0.9444 | 0.9445 | 0.9940 | | 0.2528 | 1.1442 | 500 | 0.2470 | 0.9278 | 0.9307 | 0.9278 | 0.9278 | 0.9924 | | 0.2364 | 1.3730 | 600 | 0.2448 | 0.9261 | 0.9306 | 0.9261 | 0.9264 | 0.9934 | | 0.34 | 1.6018 | 700 | 0.1986 | 0.9404 | 0.9409 | 0.9404 | 0.9405 | 0.9929 | | 0.2001 | 1.8307 | 800 | 0.1525 | 0.9542 | 0.9548 | 0.9542 | 0.9539 | 0.9960 | | 0.0958 | 2.0595 | 900 | 0.1783 | 0.9507 | 0.9515 | 0.9507 | 0.9505 | 0.9952 | | 0.1862 | 2.2883 | 1000 | 0.1654 | 0.9553 | 0.9558 | 0.9553 | 0.9551 | 0.9952 | | 0.1021 | 2.5172 | 1100 | 0.1654 | 0.9462 | 0.9472 | 0.9462 | 0.9459 | 0.9958 | | 0.1178 | 2.7460 | 1200 | 0.1591 | 0.9525 | 0.9536 | 0.9525 | 0.9523 | 0.9960 | | 0.0474 | 2.9748 | 1300 | 0.1299 | 0.9633 | 0.9635 | 0.9633 | 0.9633 | 0.9975 | | 0.046 | 3.2037 | 1400 | 0.1384 | 0.9628 | 0.9628 | 0.9628 | 0.9627 | 0.9972 | | 0.0294 | 3.4325 | 1500 | 0.1388 | 0.9645 | 0.9644 | 0.9645 | 0.9644 | 0.9969 | | 0.1833 | 3.6613 | 1600 | 0.1346 | 0.9633 | 0.9634 | 0.9633 | 0.9633 | 0.9971 | | 0.0548 | 3.8902 | 1700 | 0.1268 | 0.9679 | 0.9679 | 0.9679 | 0.9679 | 0.9974 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1