mertyazan commited on
Commit
b3f8c34
·
1 Parent(s): b10dde0

Landing is done!

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 231.52 +/- 40.17
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
Yazan_moon_lander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2535038b8c892f1ddae8e51bdf7da6f3cd110875a1bfcd0c664d768d1828da9
3
+ size 147424
Yazan_moon_lander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
Yazan_moon_lander/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a13a0e670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a13a0e700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a13a0e790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a13a0e820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3a13a0e8b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3a13a0e940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3a13a0e9d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a13a0ea60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3a13a0eaf0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a13a0eb80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a13a0ec10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a13a0eca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f3a13a087e0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673797990218969290,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2GHzzDzWS6LiInupA5MrY4ggW794RBOQAAgD8AAIA/AOh0PXtGirpKKOk6d7PrNRLEsTrdLgW6AACAPwAAgD8a4yI9FASCutpAoDuNMrA2EZ6tumr+uroAAIA/AACAP/N4tD0pDBG67nBMu39cn7bA5PQ6ymVuOgAAgD8AAIA/mo6lPRn2fz4T5py9O5YtvnMUPT0QyvK9AAAAAAAAAADNYU69zt6oP6N+8rox3oO+HqfovSMZhrsAAAAAAAAAAJN3Dj7rm3Q/c3LGPNnOdr4gbFE9ZE2hvAAAAAAAAAAAGukjPdzDoD8m9S8+1WGLvkinmzwlqB49AAAAAAAAAAD196S+1A2PP3mOs7zbY2m+OItHvrq3Yj0AAAAAAAAAAICRbT3DYX+62T0ivFJB+DUFE5M6tr1atQAAgD8AAIA/zbzcPQl8bj1Qizc5dk1Svu/2MT0tm188AAAAAAAAAAAAWhs9SNObutJuPDqcKWw10Ig+OSggVrkAAIA/AACAP4D+LT3D6Qy6xWEUucLgGbThdas6usMpOAAAgD8AAIA/Zvb4Ow8RCz7oye894WNPvn5eaD10t6e8AAAAAAAAAADNJQk9D5CPP54ntD19wmi+GvQsPN+fpjwAAAAAAAAAAJ3myj5MOoc/kiDMPrC66b66N64+boXCuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHvmDgWdaZUCUhpRSlIwBbJRN6AOMAXSUR0CaQZPva11GdX2UKGgGaAloD0MI2lNyTuz7ZECUhpRSlGgVTegDaBZHQJpBlN21Ul11fZQoaAZoCWgPQwhzS6sh8Y9hQJSGlFKUaBVN6ANoFkdAmkNWTTvy9XV9lChoBmgJaA9DCIZZaOc0i2FAlIaUUpRoFU3oA2gWR0CaSfradtl7dX2UKGgGaAloD0MI+YOB5974ZkCUhpRSlGgVTegDaBZHQJpP/e2uxKR1fZQoaAZoCWgPQwjSb18HTn5jQJSGlFKUaBVN6ANoFkdAmlj/tQbdanV9lChoBmgJaA9DCHoX78ftaVtAlIaUUpRoFU3oA2gWR0CaY5bQC0WudX2UKGgGaAloD0MIob/QI8b8YUCUhpRSlGgVTegDaBZHQJp2ouTRplB1fZQoaAZoCWgPQwhEqFKzB6thQJSGlFKUaBVN6ANoFkdAmnmcyvcJt3V9lChoBmgJaA9DCCv6QzNP9GBAlIaUUpRoFU3oA2gWR0Caet80UGmldX2UKGgGaAloD0MIWp9yTJY6YECUhpRSlGgVTegDaBZHQJp7UYWLxZx1fZQoaAZoCWgPQwhI+rSKfghjQJSGlFKUaBVN6ANoFkdAmoGY150KZ3V9lChoBmgJaA9DCKWg20uaC2JAlIaUUpRoFU3oA2gWR0Cagppi7TUidX2UKGgGaAloD0MI9bwbCwqcZECUhpRSlGgVTegDaBZHQJqEiy8jAzp1fZQoaAZoCWgPQwia0vpbAgtjQJSGlFKUaBVN6ANoFkdAmqGC48U21nV9lChoBmgJaA9DCDmZuFUQUl5AlIaUUpRoFU3oA2gWR0CaojkxREWqdX2UKGgGaAloD0MIhPI+juYkXUCUhpRSlGgVTegDaBZHQJqkInUlRgt1fZQoaAZoCWgPQwjpZKn1/ndlQJSGlFKUaBVN6ANoFkdAmqQjZlFtsXV9lChoBmgJaA9DCAwDllzFh2NAlIaUUpRoFU3oA2gWR0CapiLk0aZQdX2UKGgGaAloD0MIevtz0RAqYkCUhpRSlGgVTegDaBZHQJqsqOdXko51fZQoaAZoCWgPQwg75dGNMF1hQJSGlFKUaBVN6ANoFkdAmrLDc2zfJnV9lChoBmgJaA9DCDPhl/r50WZAlIaUUpRoFU3oA2gWR0CavAg/TspodX2UKGgGaAloD0MIqdxELc02YUCUhpRSlGgVTegDaBZHQJrGseq7yx11fZQoaAZoCWgPQwjj/iPToWBiQJSGlFKUaBVN6ANoFkdAmtn/uCwr2HV9lChoBmgJaA9DCBCwVu2ah1VAlIaUUpRoFU3oA2gWR0Ca3Suy/sVtdX2UKGgGaAloD0MISIszhrl2ZECUhpRSlGgVTegDaBZHQJregJIDoyN1fZQoaAZoCWgPQwjxEMZP4+5hQJSGlFKUaBVN6ANoFkdAmt787p3X7XV9lChoBmgJaA9DCOpdvB83SmFAlIaUUpRoFU3oA2gWR0Ca5cwxWT5gdX2UKGgGaAloD0MI5nYv98myYUCUhpRSlGgVTegDaBZHQJrm/5VOsT51fZQoaAZoCWgPQwj6m1CIACliQJSGlFKUaBVN6ANoFkdAmulRDCxeLXV9lChoBmgJaA9DCLH5uDZU8mFAlIaUUpRoFU3oA2gWR0CbBsthuwX7dX2UKGgGaAloD0MIveDTnDziYUCUhpRSlGgVTegDaBZHQJsHmZc9nsd1fZQoaAZoCWgPQwg1e6AVGHtbQJSGlFKUaBVN6ANoFkdAmwmRakhzNnV9lChoBmgJaA9DCEsFFVU/imZAlIaUUpRoFU3oA2gWR0CbCZMLncL0dX2UKGgGaAloD0MI/RUyV4YEYkCUhpRSlGgVTegDaBZHQJsLiF7D2rZ1fZQoaAZoCWgPQwhDkIMSZopcQJSGlFKUaBVN6ANoFkdAmxKaouPFN3V9lChoBmgJaA9DCCO8PQgB/19AlIaUUpRoFU3oA2gWR0CbGOc4YJmedX2UKGgGaAloD0MIeXWOAdl8XECUhpRSlGgVTegDaBZHQJsjT0RODap1fZQoaAZoCWgPQwjW/PhLCypkQJSGlFKUaBVN6ANoFkdAmy5e23KB/nV9lChoBmgJaA9DCD9SRIbVVGJAlIaUUpRoFU3oA2gWR0CbQkhUzbeudX2UKGgGaAloD0MIl6lJ8IZ/X0CUhpRSlGgVTegDaBZHQJtFjuPV/c51fZQoaAZoCWgPQwgYQWMm0WZiQJSGlFKUaBVN6ANoFkdAm0cAqI7/43V9lChoBmgJaA9DCH8TChFwd1xAlIaUUpRoFU3oA2gWR0CbR4iiZfD2dX2UKGgGaAloD0MICAPPvYf3Y0CUhpRSlGgVTegDaBZHQJtN17fHggp1fZQoaAZoCWgPQwgN4C2QIJBkQJSGlFKUaBVN6ANoFkdAm07eW4Vh1HV9lChoBmgJaA9DCJ8561OOTWNAlIaUUpRoFU3oA2gWR0CbUNeLNwBHdX2UKGgGaAloD0MItW6D2u8bZUCUhpRSlGgVTegDaBZHQJtYV2U0Nz91fZQoaAZoCWgPQwihaYmV0RJiQJSGlFKUaBVN6ANoFkdAm1kLSuyNXHV9lChoBmgJaA9DCJrtCn2wkkNAlIaUUpRoFU0PAWgWR0CbbuTc6/7BdX2UKGgGaAloD0MIrws/OJ9vYECUhpRSlGgVTegDaBZHQJtvmXRgJC11fZQoaAZoCWgPQwi2EU92s/1hQJSGlFKUaBVN6ANoFkdAm2+ZrP+n63V9lChoBmgJaA9DCFcnZyjuKmBAlIaUUpRoFU3oA2gWR0CbcScFyJbddX2UKGgGaAloD0MIlQuVf61DZECUhpRSlGgVTegDaBZHQJt3VsQ/X5F1fZQoaAZoCWgPQwj03EJXIgVhQJSGlFKUaBVN6ANoFkdAm30OPzWf9XV9lChoBmgJaA9DCDp6/N4mMWNAlIaUUpRoFU3oA2gWR0Cbhb1GLDQ7dX2UKGgGaAloD0MItVAyOTW8YkCUhpRSlGgVTegDaBZHQJuPQc6vJRx1fZQoaAZoCWgPQwh4KuCe575mQJSGlFKUaBVN6ANoFkdAm6GHJ9y93HV9lChoBmgJaA9DCOBIoMEm1mNAlIaUUpRoFU3oA2gWR0CbpJ7FKkEcdX2UKGgGaAloD0MIRIoBEk0iYkCUhpRSlGgVTegDaBZHQJul+2fChvl1fZQoaAZoCWgPQwjoFU89UtRlQJSGlFKUaBVN6ANoFkdAm61I+B6KL3V9lChoBmgJaA9DCKVN1T2yNmJAlIaUUpRoFU3oA2gWR0Cbrlr0J4SpdX2UKGgGaAloD0MI3/jaM8sjYUCUhpRSlGgVTegDaBZHQJuwhs/IKdB1fZQoaAZoCWgPQwj+tbxyPeRmQJSGlFKUaBVN6ANoFkdAm7isYMvysnV9lChoBmgJaA9DCEUNpmH4HGVAlIaUUpRoFU3oA2gWR0CbuWRZ2ZAqdX2UKGgGaAloD0MID5iHTHkuYkCUhpRSlGgVTegDaBZHQJu6bxusLfF1fZQoaAZoCWgPQwj5npEIjRdaQJSGlFKUaBVN6ANoFkdAm7solQdjonV9lChoBmgJaA9DCJg1scBXQWNAlIaUUpRoFU3oA2gWR0CbuymGucMFdX2UKGgGaAloD0MIequuQ7VcYUCUhpRSlGgVTegDaBZHQJvRnaxoqTd1fZQoaAZoCWgPQwjDf7qBgrFkQJSGlFKUaBVN6ANoFkdAm9dnWWhRInV9lChoBmgJaA9DCGZK628JGGJAlIaUUpRoFU3oA2gWR0Cb3PPxx1gZdX2UKGgGaAloD0MI9n04SIhyZUCUhpRSlGgVTegDaBZHQJvlp3EAHVx1fZQoaAZoCWgPQwhTWKmgIu9kQJSGlFKUaBVN6ANoFkdAm+/HJHRTj3V9lChoBmgJaA9DCOsAiLv6EmNAlIaUUpRoFU3oA2gWR0CcAJqJdjXndX2UKGgGaAloD0MI5Uf8irXdZkCUhpRSlGgVTegDaBZHQJwDRikO7QN1fZQoaAZoCWgPQwibrie6rnFmQJSGlFKUaBVN6ANoFkdAnASGfK6nSHV9lChoBmgJaA9DCLn98smK/WJAlIaUUpRoFU3oA2gWR0CcCvUWEbo9dX2UKGgGaAloD0MIfgBSm7gmYkCUhpRSlGgVTegDaBZHQJwMAA2hqTN1fZQoaAZoCWgPQwjBbti2qPVkQJSGlFKUaBVN6ANoFkdAnA4F5GBnSXV9lChoBmgJaA9DCPPixFc7EmRAlIaUUpRoFU3oA2gWR0CcFqwCKaXsdX2UKGgGaAloD0MIdcqjG+FyYkCUhpRSlGgVTegDaBZHQJwXbsXzlLh1fZQoaAZoCWgPQwjp1mt6UPFfQJSGlFKUaBVN6ANoFkdAnBiS/bj943V9lChoBmgJaA9DCOny5nAt9mVAlIaUUpRoFU3oA2gWR0CcGWVWjoIOdX2UKGgGaAloD0MI6x1uhwbmY0CUhpRSlGgVTegDaBZHQJwZZaxHG0h1fZQoaAZoCWgPQwhwmj474MtaQJSGlFKUaBVN6ANoFkdAnDAWcz67/XV9lChoBmgJaA9DCDKs4o3MrmJAlIaUUpRoFU3oA2gWR0CcNilRxcVydX2UKGgGaAloD0MINNb+zvbCYECUhpRSlGgVTegDaBZHQJw71urIYFd1fZQoaAZoCWgPQwiyYrg6ADRfQJSGlFKUaBVN6ANoFkdAnERpsfq5b3V9lChoBmgJaA9DCKkSZW8p4WNAlIaUUpRoFU3oA2gWR0CcTaG8mKIjdX2UKGgGaAloD0MI/89hvryzYUCUhpRSlGgVTegDaBZHQJxd4JJGvwF1fZQoaAZoCWgPQwiEK6BQT/1cQJSGlFKUaBVN6ANoFkdAnGCrKRuCPXV9lChoBmgJaA9DCDlCBvJsn2NAlIaUUpRoFU3oA2gWR0CcYcvRZ2ZBdX2UKGgGaAloD0MIiEm4kEd7ZUCUhpRSlGgVTegDaBZHQJxn8+3Ytg91fZQoaAZoCWgPQwj430p2bEpeQJSGlFKUaBVN6ANoFkdAnGjZs0pEyHV9lChoBmgJaA9DCPKWqx+bxWZAlIaUUpRoFU3oA2gWR0CcapizLOiWdX2UKGgGaAloD0MItYe9UMByZkCUhpRSlGgVTegDaBZHQJxx1whnrY51fZQoaAZoCWgPQwggRgiPtphlQJSGlFKUaBVN6ANoFkdAnHKIVARkE3V9lChoBmgJaA9DCFjjbDqCu2VAlIaUUpRoFU3oA2gWR0Ccc6D2alUIdX2UKGgGaAloD0MIArnEkYcSYkCUhpRSlGgVTegDaBZHQJx0T8m8dxR1fZQoaAZoCWgPQwhd34eDhLVeQJSGlFKUaBVN6ANoFkdAnHRPwiJO33V9lChoBmgJaA9DCLq8OVyrSGNAlIaUUpRoFU3oA2gWR0CcdcVQAMlUdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
Yazan_moon_lander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abfd75aa6e6edb0bba6f44d745815882697ca67bb633d09c3b56844bc04a946f
3
+ size 87929
Yazan_moon_lander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5079d9f38e2647933050e6593c42761c9f52f29e3b4999b405f3dadc06c5d573
3
+ size 43393
Yazan_moon_lander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Yazan_moon_lander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a13a0e670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a13a0e700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a13a0e790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a13a0e820>", "_build": "<function ActorCriticPolicy._build at 0x7f3a13a0e8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3a13a0e940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3a13a0e9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a13a0ea60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3a13a0eaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a13a0eb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a13a0ec10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a13a0eca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3a13a087e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673797990218969290, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2GHzzDzWS6LiInupA5MrY4ggW794RBOQAAgD8AAIA/AOh0PXtGirpKKOk6d7PrNRLEsTrdLgW6AACAPwAAgD8a4yI9FASCutpAoDuNMrA2EZ6tumr+uroAAIA/AACAP/N4tD0pDBG67nBMu39cn7bA5PQ6ymVuOgAAgD8AAIA/mo6lPRn2fz4T5py9O5YtvnMUPT0QyvK9AAAAAAAAAADNYU69zt6oP6N+8rox3oO+HqfovSMZhrsAAAAAAAAAAJN3Dj7rm3Q/c3LGPNnOdr4gbFE9ZE2hvAAAAAAAAAAAGukjPdzDoD8m9S8+1WGLvkinmzwlqB49AAAAAAAAAAD196S+1A2PP3mOs7zbY2m+OItHvrq3Yj0AAAAAAAAAAICRbT3DYX+62T0ivFJB+DUFE5M6tr1atQAAgD8AAIA/zbzcPQl8bj1Qizc5dk1Svu/2MT0tm188AAAAAAAAAAAAWhs9SNObutJuPDqcKWw10Ig+OSggVrkAAIA/AACAP4D+LT3D6Qy6xWEUucLgGbThdas6usMpOAAAgD8AAIA/Zvb4Ow8RCz7oye894WNPvn5eaD10t6e8AAAAAAAAAADNJQk9D5CPP54ntD19wmi+GvQsPN+fpjwAAAAAAAAAAJ3myj5MOoc/kiDMPrC66b66N64+boXCuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHvmDgWdaZUCUhpRSlIwBbJRN6AOMAXSUR0CaQZPva11GdX2UKGgGaAloD0MI2lNyTuz7ZECUhpRSlGgVTegDaBZHQJpBlN21Ul11fZQoaAZoCWgPQwhzS6sh8Y9hQJSGlFKUaBVN6ANoFkdAmkNWTTvy9XV9lChoBmgJaA9DCIZZaOc0i2FAlIaUUpRoFU3oA2gWR0CaSfradtl7dX2UKGgGaAloD0MI+YOB5974ZkCUhpRSlGgVTegDaBZHQJpP/e2uxKR1fZQoaAZoCWgPQwjSb18HTn5jQJSGlFKUaBVN6ANoFkdAmlj/tQbdanV9lChoBmgJaA9DCHoX78ftaVtAlIaUUpRoFU3oA2gWR0CaY5bQC0WudX2UKGgGaAloD0MIob/QI8b8YUCUhpRSlGgVTegDaBZHQJp2ouTRplB1fZQoaAZoCWgPQwhEqFKzB6thQJSGlFKUaBVN6ANoFkdAmnmcyvcJt3V9lChoBmgJaA9DCCv6QzNP9GBAlIaUUpRoFU3oA2gWR0Caet80UGmldX2UKGgGaAloD0MIWp9yTJY6YECUhpRSlGgVTegDaBZHQJp7UYWLxZx1fZQoaAZoCWgPQwhI+rSKfghjQJSGlFKUaBVN6ANoFkdAmoGY150KZ3V9lChoBmgJaA9DCKWg20uaC2JAlIaUUpRoFU3oA2gWR0Cagppi7TUidX2UKGgGaAloD0MI9bwbCwqcZECUhpRSlGgVTegDaBZHQJqEiy8jAzp1fZQoaAZoCWgPQwia0vpbAgtjQJSGlFKUaBVN6ANoFkdAmqGC48U21nV9lChoBmgJaA9DCDmZuFUQUl5AlIaUUpRoFU3oA2gWR0CaojkxREWqdX2UKGgGaAloD0MIhPI+juYkXUCUhpRSlGgVTegDaBZHQJqkInUlRgt1fZQoaAZoCWgPQwjpZKn1/ndlQJSGlFKUaBVN6ANoFkdAmqQjZlFtsXV9lChoBmgJaA9DCAwDllzFh2NAlIaUUpRoFU3oA2gWR0CapiLk0aZQdX2UKGgGaAloD0MIevtz0RAqYkCUhpRSlGgVTegDaBZHQJqsqOdXko51fZQoaAZoCWgPQwg75dGNMF1hQJSGlFKUaBVN6ANoFkdAmrLDc2zfJnV9lChoBmgJaA9DCDPhl/r50WZAlIaUUpRoFU3oA2gWR0CavAg/TspodX2UKGgGaAloD0MIqdxELc02YUCUhpRSlGgVTegDaBZHQJrGseq7yx11fZQoaAZoCWgPQwjj/iPToWBiQJSGlFKUaBVN6ANoFkdAmtn/uCwr2HV9lChoBmgJaA9DCBCwVu2ah1VAlIaUUpRoFU3oA2gWR0Ca3Suy/sVtdX2UKGgGaAloD0MISIszhrl2ZECUhpRSlGgVTegDaBZHQJregJIDoyN1fZQoaAZoCWgPQwjxEMZP4+5hQJSGlFKUaBVN6ANoFkdAmt787p3X7XV9lChoBmgJaA9DCOpdvB83SmFAlIaUUpRoFU3oA2gWR0Ca5cwxWT5gdX2UKGgGaAloD0MI5nYv98myYUCUhpRSlGgVTegDaBZHQJrm/5VOsT51fZQoaAZoCWgPQwj6m1CIACliQJSGlFKUaBVN6ANoFkdAmulRDCxeLXV9lChoBmgJaA9DCLH5uDZU8mFAlIaUUpRoFU3oA2gWR0CbBsthuwX7dX2UKGgGaAloD0MIveDTnDziYUCUhpRSlGgVTegDaBZHQJsHmZc9nsd1fZQoaAZoCWgPQwg1e6AVGHtbQJSGlFKUaBVN6ANoFkdAmwmRakhzNnV9lChoBmgJaA9DCEsFFVU/imZAlIaUUpRoFU3oA2gWR0CbCZMLncL0dX2UKGgGaAloD0MI/RUyV4YEYkCUhpRSlGgVTegDaBZHQJsLiF7D2rZ1fZQoaAZoCWgPQwhDkIMSZopcQJSGlFKUaBVN6ANoFkdAmxKaouPFN3V9lChoBmgJaA9DCCO8PQgB/19AlIaUUpRoFU3oA2gWR0CbGOc4YJmedX2UKGgGaAloD0MIeXWOAdl8XECUhpRSlGgVTegDaBZHQJsjT0RODap1fZQoaAZoCWgPQwjW/PhLCypkQJSGlFKUaBVN6ANoFkdAmy5e23KB/nV9lChoBmgJaA9DCD9SRIbVVGJAlIaUUpRoFU3oA2gWR0CbQkhUzbeudX2UKGgGaAloD0MIl6lJ8IZ/X0CUhpRSlGgVTegDaBZHQJtFjuPV/c51fZQoaAZoCWgPQwgYQWMm0WZiQJSGlFKUaBVN6ANoFkdAm0cAqI7/43V9lChoBmgJaA9DCH8TChFwd1xAlIaUUpRoFU3oA2gWR0CbR4iiZfD2dX2UKGgGaAloD0MICAPPvYf3Y0CUhpRSlGgVTegDaBZHQJtN17fHggp1fZQoaAZoCWgPQwgN4C2QIJBkQJSGlFKUaBVN6ANoFkdAm07eW4Vh1HV9lChoBmgJaA9DCJ8561OOTWNAlIaUUpRoFU3oA2gWR0CbUNeLNwBHdX2UKGgGaAloD0MItW6D2u8bZUCUhpRSlGgVTegDaBZHQJtYV2U0Nz91fZQoaAZoCWgPQwihaYmV0RJiQJSGlFKUaBVN6ANoFkdAm1kLSuyNXHV9lChoBmgJaA9DCJrtCn2wkkNAlIaUUpRoFU0PAWgWR0CbbuTc6/7BdX2UKGgGaAloD0MIrws/OJ9vYECUhpRSlGgVTegDaBZHQJtvmXRgJC11fZQoaAZoCWgPQwi2EU92s/1hQJSGlFKUaBVN6ANoFkdAm2+ZrP+n63V9lChoBmgJaA9DCFcnZyjuKmBAlIaUUpRoFU3oA2gWR0CbcScFyJbddX2UKGgGaAloD0MIlQuVf61DZECUhpRSlGgVTegDaBZHQJt3VsQ/X5F1fZQoaAZoCWgPQwj03EJXIgVhQJSGlFKUaBVN6ANoFkdAm30OPzWf9XV9lChoBmgJaA9DCDp6/N4mMWNAlIaUUpRoFU3oA2gWR0Cbhb1GLDQ7dX2UKGgGaAloD0MItVAyOTW8YkCUhpRSlGgVTegDaBZHQJuPQc6vJRx1fZQoaAZoCWgPQwh4KuCe575mQJSGlFKUaBVN6ANoFkdAm6GHJ9y93HV9lChoBmgJaA9DCOBIoMEm1mNAlIaUUpRoFU3oA2gWR0CbpJ7FKkEcdX2UKGgGaAloD0MIRIoBEk0iYkCUhpRSlGgVTegDaBZHQJul+2fChvl1fZQoaAZoCWgPQwjoFU89UtRlQJSGlFKUaBVN6ANoFkdAm61I+B6KL3V9lChoBmgJaA9DCKVN1T2yNmJAlIaUUpRoFU3oA2gWR0Cbrlr0J4SpdX2UKGgGaAloD0MI3/jaM8sjYUCUhpRSlGgVTegDaBZHQJuwhs/IKdB1fZQoaAZoCWgPQwj+tbxyPeRmQJSGlFKUaBVN6ANoFkdAm7isYMvysnV9lChoBmgJaA9DCEUNpmH4HGVAlIaUUpRoFU3oA2gWR0CbuWRZ2ZAqdX2UKGgGaAloD0MID5iHTHkuYkCUhpRSlGgVTegDaBZHQJu6bxusLfF1fZQoaAZoCWgPQwj5npEIjRdaQJSGlFKUaBVN6ANoFkdAm7solQdjonV9lChoBmgJaA9DCJg1scBXQWNAlIaUUpRoFU3oA2gWR0CbuymGucMFdX2UKGgGaAloD0MIequuQ7VcYUCUhpRSlGgVTegDaBZHQJvRnaxoqTd1fZQoaAZoCWgPQwjDf7qBgrFkQJSGlFKUaBVN6ANoFkdAm9dnWWhRInV9lChoBmgJaA9DCGZK628JGGJAlIaUUpRoFU3oA2gWR0Cb3PPxx1gZdX2UKGgGaAloD0MI9n04SIhyZUCUhpRSlGgVTegDaBZHQJvlp3EAHVx1fZQoaAZoCWgPQwhTWKmgIu9kQJSGlFKUaBVN6ANoFkdAm+/HJHRTj3V9lChoBmgJaA9DCOsAiLv6EmNAlIaUUpRoFU3oA2gWR0CcAJqJdjXndX2UKGgGaAloD0MI5Uf8irXdZkCUhpRSlGgVTegDaBZHQJwDRikO7QN1fZQoaAZoCWgPQwibrie6rnFmQJSGlFKUaBVN6ANoFkdAnASGfK6nSHV9lChoBmgJaA9DCLn98smK/WJAlIaUUpRoFU3oA2gWR0CcCvUWEbo9dX2UKGgGaAloD0MIfgBSm7gmYkCUhpRSlGgVTegDaBZHQJwMAA2hqTN1fZQoaAZoCWgPQwjBbti2qPVkQJSGlFKUaBVN6ANoFkdAnA4F5GBnSXV9lChoBmgJaA9DCPPixFc7EmRAlIaUUpRoFU3oA2gWR0CcFqwCKaXsdX2UKGgGaAloD0MIdcqjG+FyYkCUhpRSlGgVTegDaBZHQJwXbsXzlLh1fZQoaAZoCWgPQwjp1mt6UPFfQJSGlFKUaBVN6ANoFkdAnBiS/bj943V9lChoBmgJaA9DCOny5nAt9mVAlIaUUpRoFU3oA2gWR0CcGWVWjoIOdX2UKGgGaAloD0MI6x1uhwbmY0CUhpRSlGgVTegDaBZHQJwZZaxHG0h1fZQoaAZoCWgPQwhwmj474MtaQJSGlFKUaBVN6ANoFkdAnDAWcz67/XV9lChoBmgJaA9DCDKs4o3MrmJAlIaUUpRoFU3oA2gWR0CcNilRxcVydX2UKGgGaAloD0MINNb+zvbCYECUhpRSlGgVTegDaBZHQJw71urIYFd1fZQoaAZoCWgPQwiyYrg6ADRfQJSGlFKUaBVN6ANoFkdAnERpsfq5b3V9lChoBmgJaA9DCKkSZW8p4WNAlIaUUpRoFU3oA2gWR0CcTaG8mKIjdX2UKGgGaAloD0MI/89hvryzYUCUhpRSlGgVTegDaBZHQJxd4JJGvwF1fZQoaAZoCWgPQwiEK6BQT/1cQJSGlFKUaBVN6ANoFkdAnGCrKRuCPXV9lChoBmgJaA9DCDlCBvJsn2NAlIaUUpRoFU3oA2gWR0CcYcvRZ2ZBdX2UKGgGaAloD0MIiEm4kEd7ZUCUhpRSlGgVTegDaBZHQJxn8+3Ytg91fZQoaAZoCWgPQwj430p2bEpeQJSGlFKUaBVN6ANoFkdAnGjZs0pEyHV9lChoBmgJaA9DCPKWqx+bxWZAlIaUUpRoFU3oA2gWR0CcapizLOiWdX2UKGgGaAloD0MItYe9UMByZkCUhpRSlGgVTegDaBZHQJxx1whnrY51fZQoaAZoCWgPQwggRgiPtphlQJSGlFKUaBVN6ANoFkdAnHKIVARkE3V9lChoBmgJaA9DCFjjbDqCu2VAlIaUUpRoFU3oA2gWR0Ccc6D2alUIdX2UKGgGaAloD0MIArnEkYcSYkCUhpRSlGgVTegDaBZHQJx0T8m8dxR1fZQoaAZoCWgPQwhd34eDhLVeQJSGlFKUaBVN6ANoFkdAnHRPwiJO33V9lChoBmgJaA9DCLq8OVyrSGNAlIaUUpRoFU3oA2gWR0CcdcVQAMlUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (196 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 231.51973178435446, "std_reward": 40.16782214927836, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T16:34:29.265030"}