mekjr1 commited on
Commit
7d5276e
·
verified ·
1 Parent(s): 32f7cd0

End of training

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gemma
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: google/gemma-2b-it
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ - precision
11
+ - recall
12
+ model-index:
13
+ - name: gemma-ai-detect-v2-multilingual
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # gemma-ai-detect-v2-multilingual
21
+
22
+ This model is a fine-tuned version of [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.8702
25
+ - Accuracy: 0.6187
26
+ - F1: 0.7644
27
+ - Precision: 0.6187
28
+ - Recall: 1.0
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 0.0006
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 32
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 5
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
59
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
60
+ | 0.9505 | 1.0 | 1250 | 0.8702 | 0.6187 | 0.7644 | 0.6187 | 1.0 |
61
+ | 0.0 | 2.0 | 2500 | 0.8702 | 0.6187 | 0.7644 | 0.6187 | 1.0 |
62
+ | 0.0 | 3.0 | 3750 | 0.8702 | 0.6187 | 0.7644 | 0.6187 | 1.0 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - PEFT 0.10.0
68
+ - Transformers 4.40.0
69
+ - Pytorch 2.5.1+cu124
70
+ - Datasets 2.18.0
71
+ - Tokenizers 0.19.1