{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f17162dec00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671466052428089067, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAGbaXL32pBm6KqKRuqvK97F01Qm6Iq2qOQAAgD8AAIA/zbI4POG2i7rmfrK7g1JeOFDbIDsSClQ4AACAPwAAgD9mHjg7ru+QuuYJ/DqkQd43T2gvO3VYn7kAAIA/AACAPwAJPL0pXDC4ToMPuQv7n7MaDtO7+uYpOAAAgD8AAIA/s1y5PSncfLpxxYO5fjamNXeWcTvNC5Y4AACAPwAAgD9Ny629H43KuQvT8ToHyHU30COpuYDsPjYAAAAAAACAPy2BCL4fkbG7C7hHvcKXB77TR4I9YSQjPwAAgD8AAIA/+twBvsRG8T7DiY0+bXu4vkXjjT3e0Y0+AAAAAAAAAADa1IG9XHM+uo6Rh7uCY6c4YhCCuf/FFDoAAIA/AACAPwCHlbzDdQi4m0ZzOkUg9jX1Y5q79hqPuQAAgD8AAIA/miSdPtZ+Hz+Glf89nuEVvzbLED9SVOg9AAAAAAAAAADmH2U9wxE/ur5B7LtfDkA4z00fuQaJCjcAAIA/AACAP21mQD4Ye64+VCY3vpszyb4JGI49NsvjvQAAAAAAAAAAANhAO3u6jrpt1NQ2vMTlMazkVTod/fa1AACAPwAAgD8AE3G99vAzujHqsDuVJyC1YtHnuo+iIrQAAIA/AACAP1qHzz37gGY/aDFxPXW3Bb/rDQc+ni/VvAAAAAAAAAAAM+KyvLjWt7l9Zdk67/pRNQ/Pijt2vgG6AACAPwAAgD+AaEU9j85Wusuc0bvwZsw4zEZmOm+vODoAAIA/AACAP81rXj3DQTa64EXQupbEcrY3Fu+41lzxOQAAgD8AAIA/zWzbPIWDiLnNvem6+cRRtpoiQzkuJww6AACAPwAAgD/abos9SOeZuti+DLxfJQ024zLYunBEfLUAAIA/AACAP42LDz5xBCG70/8FuyTFcDdlWwS8jEcaOgAAgD8AAIA/GncuvY+WBLoF2oE8hatXNWqb17owdl00AACAPwAAgD+amFy9j+IIOYjm9DuqIoC08K3Xu6rNfrMAAIA/AACAPwCga732KE2603DgOyP78TdsiAW7UL7GtQAAgD8AAIA/GvhdPSmcGrjAqSO8l1lAtl+hdDq7N7I1AACAPwAAgD9mVke9KRB/unHwx7qJkYu1QM/QOtVY5jkAAIA/AACAP7ppBz5FM6Q/mtDmPgerBL+j0Wk+SrWfPgAAAAAAAAAAs9QUvSlwQ7q9C0+6AFjWMwtBnDqrg3A5AACAPwAAgD+a4I28SOHAuEDix7pygga21gT8OkPceDUAAIA/AACAP3MF973TgR4/rqPZPafVub78es29FQ37PQAAAAAAAAAAWuaEPe3wNj8ht8K9+kTSvq8GdrxTSU89AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFAmmmtmZYECUhpRSlIwBbJRN6AOMAXSUR0ChAT26bvw3dX2UKGgGaAloD0MI7Q2+MJm/Y0CUhpRSlGgVTegDaBZHQKECXR8+ial1fZQoaAZoCWgPQwiSlzWxwKJjQJSGlFKUaBVN6ANoFkdAoQOAEdNnG3V9lChoBmgJaA9DCID0TZoGkWRAlIaUUpRoFU3oA2gWR0ChBJ5avA45dX2UKGgGaAloD0MIJF6ezpVyYkCUhpRSlGgVTegDaBZHQKEGXWcz68B1fZQoaAZoCWgPQwh4JclzfbJjQJSGlFKUaBVN6ANoFkdAoQhg8OkLyHV9lChoBmgJaA9DCPrxlxb1TWRAlIaUUpRoFU3oA2gWR0ChC9PpQk5ZdX2UKGgGaAloD0MIjC5vDleEYUCUhpRSlGgVTegDaBZHQKENcqMFUyZ1fZQoaAZoCWgPQwhv88ZJYZdkQJSGlFKUaBVN6ANoFkdAoQ5/XsgMdHV9lChoBmgJaA9DCKeyKOwi/mVAlIaUUpRoFU3oA2gWR0ChF51Gsmv4dX2UKGgGaAloD0MIzLT9KytfYkCUhpRSlGgVTegDaBZHQKEeNLmp2ll1fZQoaAZoCWgPQwicU8kA0FliQJSGlFKUaBVN6ANoFkdAoR+uVzIV/XV9lChoBmgJaA9DCGcPtAJD3WBAlIaUUpRoFU3oA2gWR0ChIXNSqEOBdX2UKGgGaAloD0MIC+vGuyOoZkCUhpRSlGgVTegDaBZHQKEhhX5nDix1fZQoaAZoCWgPQwgvNq0UgghnQJSGlFKUaBVN6ANoFkdAoSKud/axo3V9lChoBmgJaA9DCHsxlBNtq2RAlIaUUpRoFU3oA2gWR0ChI5rLpzLfdX2UKGgGaAloD0MIJNHLKJbKZECUhpRSlGgVTegDaBZHQKEoySlnAZd1fZQoaAZoCWgPQwhHO274XThmQJSGlFKUaBVN6ANoFkdAoSmSifxtpHV9lChoBmgJaA9DCHQprip7bWVAlIaUUpRoFU3oA2gWR0ChLDYsmOU/dX2UKGgGaAloD0MIBoVBmcbPY0CUhpRSlGgVTegDaBZHQKEuTgBtDUp1fZQoaAZoCWgPQwgIILWJE75gQJSGlFKUaBVN6ANoFkdAoS6LfJmuknV9lChoBmgJaA9DCHY25J8ZzVNAlIaUUpRoFUvFaBZHQKEvmVYZEUl1fZQoaAZoCWgPQwhBZJEm3iZmQJSGlFKUaBVN6ANoFkdAoTGWwC8vmHV9lChoBmgJaA9DCFcm/FK/gWJAlIaUUpRoFU3oA2gWR0ChM62RaHKwdX2UKGgGaAloD0MIKNNocjE2XkCUhpRSlGgVTegDaBZHQKE0iV+qioN1fZQoaAZoCWgPQwj8j0yHTvNlQJSGlFKUaBVN6ANoFkdAoTTaTt9hJHV9lChoBmgJaA9DCNNQo5Bk7V9AlIaUUpRoFU3oA2gWR0ChNOqN6w+udX2UKGgGaAloD0MIFK5H4foeYUCUhpRSlGgVTegDaBZHQKE0/D4QBgh1fZQoaAZoCWgPQwg0uoPYmcpkQJSGlFKUaBVN6ANoFkdAoTZI+wC8vnV9lChoBmgJaA9DCG5t4XkptWRAlIaUUpRoFU3oA2gWR0ChTAvnr6cidX2UKGgGaAloD0MIFhdH5SYhZECUhpRSlGgVTegDaBZHQKFNODkELYx1fZQoaAZoCWgPQwgAyXTo9BwbwJSGlFKUaBVLxGgWR0ChTuQd8zAOdX2UKGgGaAloD0MIXRq/8EpyB0CUhpRSlGgVS7NoFkdAoU+3aSLZSXV9lChoBmgJaA9DCNk/TwOGcmNAlIaUUpRoFU3oA2gWR0ChUKmLDQ7cdX2UKGgGaAloD0MIBfuvc9OjZECUhpRSlGgVTegDaBZHQKFRRMZgogF1fZQoaAZoCWgPQwhj0t9L4VdRQJSGlFKUaBVLpmgWR0ChUYozvZyudX2UKGgGaAloD0MINufgmdBgPECUhpRSlGgVS7poFkdAoVLi2jO9nXV9lChoBmgJaA9DCLbaw14o8GRAlIaUUpRoFU3oA2gWR0ChU7nE2pAEdX2UKGgGaAloD0MIGO5cGOkyYkCUhpRSlGgVTegDaBZHQKFUwpS75Ed1fZQoaAZoCWgPQwjvkc1Vc1VnQJSGlFKUaBVN6ANoFkdAoVXOUW2w3nV9lChoBmgJaA9DCFrW/WMh0GRAlIaUUpRoFU3oA2gWR0ChVtDQiRnwdX2UKGgGaAloD0MI3Esao3UmUkCUhpRSlGgVS8JoFkdAoVfXSlWOqHV9lChoBmgJaA9DCDTW/s5292RAlIaUUpRoFU3oA2gWR0ChWHxO+IuXdX2UKGgGaAloD0MIfH4YITyiZECUhpRSlGgVTegDaBZHQKFaQTA31jB1fZQoaAZoCWgPQwhA+FCipZ9kQJSGlFKUaBVN6ANoFkdAoV1RPAO8TXV9lChoBmgJaA9DCHxjCACOIWRAlIaUUpRoFU3oA2gWR0ChXrVLSNOudX2UKGgGaAloD0MI6+QMxR09ZECUhpRSlGgVTegDaBZHQKFfsMkyDZl1fZQoaAZoCWgPQwgGLSRgdHhkQJSGlFKUaBVN6ANoFkdAoWhY99tuUHV9lChoBmgJaA9DCNFZZhEKGWVAlIaUUpRoFU3oA2gWR0ChbmcR15jZdX2UKGgGaAloD0MIHD9UGjG0ZUCUhpRSlGgVTegDaBZHQKFvxz90ihZ1fZQoaAZoCWgPQwgBa9WuCZBkQJSGlFKUaBVN6ANoFkdAoXGCiqQzUXV9lChoBmgJaA9DCPg2/dmPXWRAlIaUUpRoFU3oA2gWR0ChcZPfKp1idX2UKGgGaAloD0MIo5I6AU2NZECUhpRSlGgVTegDaBZHQKFzeCGN70F1fZQoaAZoCWgPQwhVEtkH2eJgQJSGlFKUaBVN6ANoFkdAoXhZXbM5fnV9lChoBmgJaA9DCI3w9iAEWlFAlIaUUpRoFUunaBZHQKF40oKlYU51fZQoaAZoCWgPQwi5VRADXTVlQJSGlFKUaBVN6ANoFkdAoXkQdOqNqHV9lChoBmgJaA9DCAQ5KGEmoGNAlIaUUpRoFU3oA2gWR0Che2Axzq8ldX2UKGgGaAloD0MI/fUKC+6dWkCUhpRSlGgVTegDaBZHQKF9KpaRp111fZQoaAZoCWgPQwg3ixcLwwdpQJSGlFKUaBVN6ANoFkdAoX1k83dbgXV9lChoBmgJaA9DCPD5YYTwzERAlIaUUpRoFUu3aBZHQKF+PIo3Jgd1fZQoaAZoCWgPQwjf3F897lBlQJSGlFKUaBVN6ANoFkdAoYG9LFn7HnV9lChoBmgJaA9DCFncf2S6MWZAlIaUUpRoFU3oA2gWR0ChgstcnmaIdX2UKGgGaAloD0MI6xnCMUvyZECUhpRSlGgVTegDaBZHQKGC2wkgOjJ1fZQoaAZoCWgPQwjO3a6XpnpmQJSGlFKUaBVN6ANoFkdAoYQV5v99+nV9lChoBmgJaA9DCEROX89XoGVAlIaUUpRoFU3oA2gWR0ChheecH4XXdX2UKGgGaAloD0MIVisTfqmBS0CUhpRSlGgVS81oFkdAoZvePgeijHV9lChoBmgJaA9DCJ+u7lhs12NAlIaUUpRoFU3oA2gWR0ChnHQ4KhL5dX2UKGgGaAloD0MI6dfWT/+ZT0CUhpRSlGgVTegDaBZHQKGdQlImPYF1fZQoaAZoCWgPQwgeU3dlF8JjQJSGlFKUaBVN6ANoFkdAoZ4h4KQaJnV9lChoBmgJaA9DCHpQUIpWamhAlIaUUpRoFU3oA2gWR0Chnq4Oc2BKdX2UKGgGaAloD0MIqOLGLWY9ZUCUhpRSlGgVTegDaBZHQKGe7WOIZZV1fZQoaAZoCWgPQwgSoRFsXE9jQJSGlFKUaBVN6ANoFkdAoaAvRG+bmXV9lChoBmgJaA9DCO8fC9GhOWlAlIaUUpRoFU3oA2gWR0ChoOphfBvadX2UKGgGaAloD0MImKYIcPprY0CUhpRSlGgVTegDaBZHQKGh2z544ZN1fZQoaAZoCWgPQwgsKAzKNP1gQJSGlFKUaBVN6ANoFkdAoaLNP8AJcHV9lChoBmgJaA9DCN+pgHueT2NAlIaUUpRoFU3oA2gWR0Cho7XEqDsddX2UKGgGaAloD0MIB3x+GKFbYECUhpRSlGgVTegDaBZHQKGkkrQw9JV1fZQoaAZoCWgPQwguqdpuAoZnQJSGlFKUaBVN6ANoFkdAoaUdhCtzS3V9lChoBmgJaA9DCJ5DGariKmFAlIaUUpRoFU3oA2gWR0ChpqsVUModdX2UKGgGaAloD0MIUKvoD822YECUhpRSlGgVTegDaBZHQKGplP4VRDV1fZQoaAZoCWgPQwiDo+TVOfViQJSGlFKUaBVN6ANoFkdAoarlGgBcRnV9lChoBmgJaA9DCN1CVyLQgWRAlIaUUpRoFU3oA2gWR0Chq8WU8mrsdX2UKGgGaAloD0MI+62dKAkDTUCUhpRSlGgVS7ZoFkdAoavGuxKQJXV9lChoBmgJaA9DCNh+MsaHQ2VAlIaUUpRoFU3oA2gWR0Chs6E1dgOSdX2UKGgGaAloD0MIyCb5ET++Z0CUhpRSlGgVTegDaBZHQKG6nfuTibV1fZQoaAZoCWgPQwgheHx719peQJSGlFKUaBVN6ANoFkdAobwuQbMot3V9lChoBmgJaA9DCGR47GcxSmdAlIaUUpRoFU3oA2gWR0ChvD5eqrBCdX2UKGgGaAloD0MIizbHuU0BZkCUhpRSlGgVTegDaBZHQKHDOPBBRht1fZQoaAZoCWgPQwgzqDY4Eb5pQJSGlFKUaBVN6ANoFkdAocO9bRneznV9lChoBmgJaA9DCMuFyr8WtGRAlIaUUpRoFU3oA2gWR0Chw/3Gff4zdX2UKGgGaAloD0MIbarukc0kX0CUhpRSlGgVTegDaBZHQKHGSQ2/BWR1fZQoaAZoCWgPQwhNTu0MUzNiQJSGlFKUaBVN6ANoFkdAochNgfEGaHV9lChoBmgJaA9DCJaWkXrPXGNAlIaUUpRoFU3oA2gWR0ChyTlnRLK3dX2UKGgGaAloD0MIGELO+/8FUUCUhpRSlGgVS5FoFkdAocwf5YYBNnV9lChoBmgJaA9DCBrc1haerF5AlIaUUpRoFU3oA2gWR0ChzQnlOoHcdX2UKGgGaAloD0MIhiAHJczCY0CUhpRSlGgVTegDaBZHQKHOMnIhhYx1fZQoaAZoCWgPQwh8tDhjGKVlQJSGlFKUaBVN6ANoFkdAoc5CRjjJdXV9lChoBmgJaA9DCFPKayV0lw/AlIaUUpRoFUtraBZHQKHPliXIEKV1fZQoaAZoCWgPQwjWGd8XF7RhQJSGlFKUaBVN6ANoFkdAoc+382rGR3V9lChoBmgJaA9DCEWb49ymOGNAlIaUUpRoFU3oA2gWR0Ch0gKkM1CPdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}