File size: 6,063 Bytes
86036fa 5aa8662 86036fa 5aa8662 86036fa 5696c9e 86036fa 5696c9e 86036fa 5696c9e 86036fa 5696c9e 86036fa 5696c9e 86036fa 5696c9e 86036fa 5696c9e 86036fa 28da649 86036fa 5aa8662 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
---
language:
- en
license: apache-2.0
base_model:
- HuggingFaceTB/SmolLM2-1.7B-Instruct
datasets:
- allenai/tulu-3-sft-mixture
- allenai/llama-3.1-tulu-3-8b-preference-mixture
model-index:
- name: SmolLM2-MedIT-Upscale-2B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 64.29
name: strict accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/SmolLM2-MedIT-Upscale-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 10.51
name: normalized accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/SmolLM2-MedIT-Upscale-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 1.06
name: exact match
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/SmolLM2-MedIT-Upscale-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 1.9
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/SmolLM2-MedIT-Upscale-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.45
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/SmolLM2-MedIT-Upscale-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 10.78
name: accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/SmolLM2-MedIT-Upscale-2B
name: Open LLM Leaderboard
---
# SmolLM2-MedIT-Upscale-2B
**Model Summary**
SmolLM2-MedIT-Upscale-2B is an expanded version of the [SmolLM2-1.7B-Instruct](https://huggingface.co./HuggingFaceTB/SmolLM2-1.7B-Instruct) model, increasing its parameter count to 2 billion. This expansion was achieved by doubling the number of heads in the `q_proj`, `k_proj`, `v_proj`, and `o_proj` layers, resulting in vectors of length 4096, compared to 2048 in the original model.
**Purpose of Expansion**
This model was developed to test the hypothesis that self-attention layers do not extend the "memory" of the model. By broadening the attention layers, we aim to observe the impact on the model's performance and memory capabilities.
## Training Status
This model underwent instruction fine-tuning for 8,800 steps using a batch size of 4, gradient accumulation for 32 steps, a maximum sequence length of 1,280, and a learning rate of 1e-5. Additionally, it was fine-tuned with 1,600 steps of DPO under the same configuration.
**Note**:
The model has undergone preliminary training focused on assessing the effects of the expanded attention layers. It is not fully trained to its maximum potential. We encourage the community to contribute to its further training; pull requests are welcome.
## Analysis of Expanded Layers
During fine-tuning, we analyzed the changes in the new parameters of the expanded layers:
- **Minimum percentage of new parameters that changed:**
- `q_proj`: 62.17%
- `k_proj`: 37.85%
- `v_proj`: 99.99%
- `o_proj`: 99.98%
- **Maximum percentage of new parameters that changed:**
- `q_proj`: 98.86%
- `k_proj`: 97.99%
- `v_proj`: 99.99%
- `o_proj`: 99.99%
- **Average change in new parameters after fine-tuning:**
- `q_proj`: 1.838e-07
- `k_proj`: 2.277e-07
- `v_proj`: 6.490e-07
- `o_proj`: 3.924e-07
These results are illustrated in the following charts:
![Percentage of Change](percent_of_change.png)
![Average Parameter Change](mean_difference.png)
## Usage
To utilize this model, follow the instructions provided for the original SmolLM2-1.7B-Instruct model, adjusting for the increased parameter size.
## Contributing
We welcome contributions to further train and evaluate this model. Please submit pull requests with your improvements.
## License
This model is licensed under the Apache 2.0 License.
## Citation
If you use this model in your research, please cite it as follows:
```
@misc{SmolLM2-MedIT-Upscale-2B,
author = {Mariusz Kurman, MedIT Solutions},
title = {SmolLM2-MedIT-Upscale-2B: An Expanded Version of SmolLM2-1.7B-Instruct},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co./meditsolutions/SmolLM2-MedIT-Upscale-2B},
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_meditsolutions__SmolLM2-MedIT-Upscale-2B)
| Metric |Value|
|-------------------|----:|
|Avg. |15.17|
|IFEval (0-Shot) |64.29|
|BBH (3-Shot) |10.51|
|MATH Lvl 5 (4-Shot)| 1.06|
|GPQA (0-shot) | 1.90|
|MuSR (0-shot) | 2.45|
|MMLU-PRO (5-shot) |10.78|
|