--- license: cc-by-4.0 base_model: deepset/xlm-roberta-base-squad2 tags: - generated_from_trainer - xlm-roberta model-index: - name: xlm-roberta-base-squad-ft-qa-en-mt-to-uzn results: [] datasets: - med-alex/qa_mt_en_to_uzn language: - uz metrics: - exact_match - f1 library_name: transformers pipeline_tag: question-answering --- # xlm-roberta-base-squad-ft-qa-en-mt-to-uzn This model is a fine-tuned version of [deepset/xlm-roberta-base-squad2](https://huggingface.co./deepset/xlm-roberta-base-squad2) on the med-alex/qa_mt_en_to_uzn dataset. ## Model description This model is one of many models created within the framework of a project to study the solution of a QA task for low-resource languages using the example of Kazakh and Uzbek. Please see the [description](https://github.com/med-alex/turkic_qa?tab=readme-ov-file#добро-пожаловать-на-студенческий-проект-посвященный-решению-задачи-qa-для-низкоресурсных-языков-на-примере-казахского-и-узбекского-языка) of the project, where there is a description of the solution and the results of the models in order to choose the best model for the Kazakh or Uzbek language. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 28 - eval_batch_size: 28 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 10.0 ### Framework versions - Transformers 4.40.1 - Pytorch 2.0.0+cu118 - Datasets 2.18.0 - Tokenizers 0.19.1