--- license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer datasets: - few-nerd metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: few-nerd type: few-nerd config: supervised split: validation args: supervised metrics: - name: Precision type: precision value: 0.7844853130000198 - name: Recall type: recall value: 0.8147760612215589 - name: F1 type: f1 value: 0.799343826738054 - name: Accuracy type: accuracy value: 0.9428779215112315 --- # bert-finetuned-ner This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co./FacebookAI/roberta-large) on the few-nerd dataset. It achieves the following results on the evaluation set: - Loss: 0.2164 - Precision: 0.7845 - Recall: 0.8148 - F1: 0.7993 - Accuracy: 0.9429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1953 | 1.0 | 32942 | 0.1933 | 0.7670 | 0.7968 | 0.7816 | 0.9395 | | 0.1573 | 2.0 | 65884 | 0.2051 | 0.7850 | 0.8034 | 0.7941 | 0.9416 | | 0.1256 | 3.0 | 98826 | 0.2164 | 0.7845 | 0.8148 | 0.7993 | 0.9429 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0