Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,56 @@
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
3 |
---
|
4 |
+
|
5 |
+
# **Synatra-kiqu-10.7B-v0.4π§**
|
6 |
+
![Synatra-10.7B-v0.4](./Synatra.png)
|
7 |
+
|
8 |
+
# Join our discord
|
9 |
+
|
10 |
+
[Server Link](https://discord.gg/MrBt3PXdXc)
|
11 |
+
|
12 |
+
# **License**
|
13 |
+
|
14 |
+
The "Model" is completely free (ie. base model, derivates, merges/mixes) to use for non-commercial purposes as long as the the included **cc-by-sa-4.0** license in any parent repository, and the non-commercial use statute remains, regardless of other models' licences.
|
15 |
+
# **Model Details**
|
16 |
+
|
17 |
+
**Base Model**
|
18 |
+
[maywell/Synatra-10.7B-v0.4](https://huggingface.co/maywell/Synatra-10.7B-v0.4)
|
19 |
+
|
20 |
+
**Trained On**
|
21 |
+
A100 80GB * 1
|
22 |
+
|
23 |
+
**Instruction format**
|
24 |
+
|
25 |
+
It follows **Alpaca** format.
|
26 |
+
|
27 |
+
# **Model Benchmark**
|
28 |
+
|
29 |
+
TBD
|
30 |
+
|
31 |
+
# **Implementation Code**
|
32 |
+
|
33 |
+
Since, chat_template already contains insturction format above.
|
34 |
+
You can use the code below.
|
35 |
+
|
36 |
+
```python
|
37 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
38 |
+
|
39 |
+
device = "cuda" # the device to load the model onto
|
40 |
+
|
41 |
+
model = AutoModelForCausalLM.from_pretrained("maywell/Synatra-kiqu-10.7B-v0.4")
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained("maywell/Synatra-kiqu-10.7B-v0.4")
|
43 |
+
|
44 |
+
messages = [
|
45 |
+
{"role": "user", "content": "λ°λλλ μλ νμμμ΄μΌ?"},
|
46 |
+
]
|
47 |
+
|
48 |
+
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
49 |
+
|
50 |
+
model_inputs = encodeds.to(device)
|
51 |
+
model.to(device)
|
52 |
+
|
53 |
+
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
54 |
+
decoded = tokenizer.batch_decode(generated_ids)
|
55 |
+
print(decoded[0])
|
56 |
+
```
|