johannhartmann
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- it
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
---
|
8 |
+
|
9 |
+
![image/png](https://huggingface.co/datasets/malteos/images/resolve/main/occiglot.medium.png)
|
10 |
+
|
11 |
+
# Occiglot-7B-it-en-Instruct
|
12 |
+
|
13 |
+
> A [polyglot](https://en.wikipedia.org/wiki/Multilingualism#In_individuals) language model for the [Occident](https://en.wikipedia.org/wiki/Occident).
|
14 |
+
>
|
15 |
+
|
16 |
+
**Occiglot-7B-EU5-Instruct** is a the instruct version of [occiglot-7b-it-en](https://huggingface.co/occiglot/occiglot-7b-it-en), a generative language model with 7B parameters supporting the top-5 EU languages (English, Spanish, French, German, and Italian) and trained by the [Occiglot Research Collective](https://occiglot.github.io/occiglot/).
|
17 |
+
It was trained on 160M tokens of additional multilingual and code instructions.
|
18 |
+
Note that the model was not safety aligned and might generate problematic outputs.
|
19 |
+
|
20 |
+
This is the first release of an ongoing open research project for multilingual language models.
|
21 |
+
If you want to train a model for your own language or are working on evaluations, please contact us or join our [Discord server](https://discord.gg/wUpvYs4XvM). **We are open for collaborations!**
|
22 |
+
|
23 |
+
|
24 |
+
### Model details
|
25 |
+
|
26 |
+
- **Instruction tuned from:** [occiglot-7b-it-en](https://huggingface.co/occiglot/occiglot-7b-it-en)
|
27 |
+
- **Model type:** Causal decoder-only transformer language model
|
28 |
+
- **Languages:** English, Italian, and code.
|
29 |
+
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html)
|
30 |
+
- **Compute resources:** [DFKI cluster](https://www.dfki.de/en/web)
|
31 |
+
- **Contributors:** Manuel Brack, Patrick Schramowski, Pedro Ortiz, Malte Ostendorff, Fabio Barth, Georg Rehm, Kristian Kersting
|
32 |
+
- **Research labs:** [Occiglot](https://occiglot.github.io/occiglot/) with support from [SAINT](https://www.dfki.de/en/web/research/research-departments/foundations-of-systems-ai) and [SLT](https://www.dfki.de/en/web/research/research-departments/speech-and-language-technology)
|
33 |
+
- **Contact:** [Discord](https://discord.gg/wUpvYs4XvM)
|
34 |
+
|
35 |
+
### How to use
|
36 |
+
|
37 |
+
The model was trained using the chatml instruction template. You can use the transformers chat template feature for interaction.
|
38 |
+
Since the generation relies on some randomness, we
|
39 |
+
set a seed for reproducibility:
|
40 |
+
|
41 |
+
```python
|
42 |
+
>>> from transformers import AutoTokenizer, MistralForCausalLM, set_seed
|
43 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("occiglot/occiglot-7b-eu5-instruct")
|
44 |
+
>>> model = MistralForCausalLM.from_pretrained('occiglot/occiglot-7b-eu5-instruct') # You may want to use bfloat16 and/or move to GPU here
|
45 |
+
>>> set_seed(42)
|
46 |
+
>>> messages = [
|
47 |
+
>>> {"role": "system", 'content': 'You are a helpful assistant. Please give short and concise answers.'},
|
48 |
+
>>> {"role": "user", "content": "chi è il primo ministro italiano?"},
|
49 |
+
>>> ]
|
50 |
+
>>> tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_dict=False, return_tensors='pt',)
|
51 |
+
>>> set_seed(42)
|
52 |
+
>>> outputs = model.generate(tokenized_chat.to('cuda'), max_new_tokens=200,)
|
53 |
+
>>> tokenizer.decode(out[0][len(tokenized_chat[0]):])
|
54 |
+
'Il primo ministro italiano è attualmente Giorgia Meloni, presidente di Fratelli d'Italia, un partito politico di estrema destra.'
|
55 |
+
```
|
56 |
+
|
57 |
+
## Dataset
|
58 |
+
|
59 |
+
The training data was split evenly amongst the 5 languages based on the total number of tokens. We would like to thank Disco Research and Björn Plüster for making their dataset available to us.
|
60 |
+
|
61 |
+
**English and Code**
|
62 |
+
- [Open-Hermes-2B](https://huggingface.co/datasets/teknium/OpenHermes-2.5)
|
63 |
+
|
64 |
+
**Italian**
|
65 |
+
- [Quora-IT-Baize](https://huggingface.co/datasets/andreabac3/Quora-Italian-Fauno-Baize)
|
66 |
+
- [Stackoverflow-IT-Vaize](https://huggingface.co/datasets/andreabac3/StackOverflow-Italian-Fauno-Baize)
|
67 |
+
- [Camoscio](https://huggingface.co/datasets/teelinsan/camoscio_cleaned)
|
68 |
+
- [OASST-2](https://huggingface.co/datasets/OpenAssistant/oasst2) (Italian subset)
|
69 |
+
- [Aya-Dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset) (Italian subset)
|
70 |
+
|
71 |
+
## Training settings
|
72 |
+
|
73 |
+
- Full instruction fine-tuning on 8xH100.
|
74 |
+
- 0.6 - 4 training epochs (depending on dataset sampling).
|
75 |
+
- Framework: [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
|
76 |
+
- Precision: bf16
|
77 |
+
- Optimizer: AdamW
|
78 |
+
- Global batch size: 128 (with 8192 context length)
|
79 |
+
- Cosine Annealing with Warmup
|
80 |
+
|
81 |
+
|
82 |
+
## Tokenizer
|
83 |
+
|
84 |
+
Tokenizer is unchanged from [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1).
|
85 |
+
|
86 |
+
## Evaluation
|
87 |
+
|
88 |
+
Preliminary evaluation results can be found below.
|
89 |
+
Please note that the non-English results are based on partially machine-translated datasets and English prompts ([Belebele](https://huggingface.co/datasets/facebook/belebele) and [Okapi framework](https://github.com/nlp-uoregon/Okapi)) and thus should be interpreted with caution, e.g., biased towards English model performance.
|
90 |
+
Currently, we are working on more suitable benchmarks for Spanish, French, German, and Italian.
|
91 |
+
|
92 |
+
<details>
|
93 |
+
<summary>Evaluation results</summary>
|
94 |
+
|
95 |
+
### English
|
96 |
+
|
97 |
+
| | arc_challenge | belebele | hellaswag | mmlu | truthfulqa | avg |
|
98 |
+
|:-------------------------------------|----------------:|-----------:|------------:|---------:|-------------:|---------:|
|
99 |
+
| occiglot/occiglot-7b-eu5 | 0.530717 | 0.726667 | 0.789882 | 0.531904 | 0.403678 | 0.59657 |
|
100 |
+
| occiglot/occiglot-7b-eu5-instruct | 0.558874 | 0.746667 | 0.799841 | 0.535109 | 0.449034 | 0.617905 |
|
101 |
+
| occiglot/occiglot-7b-it-en | 0.580205 | 0.774444 | 0.804222 | 0.578977 | 0.412786 | 0.630127 |
|
102 |
+
| occiglot/occiglot-7b-it-en-instruct | 0.609215 | 0.82 | 0.809301 | 0.578835 | 0.479562 | 0.659383 |
|
103 |
+
| galatolo/cerbero-7b | 0.613481 | 0.827778 | 0.810396 | 0.600484 | 0.480911 | 0.66661 |
|
104 |
+
| mistralai/Mistral-7B-v0.1 | 0.612628 | 0.844444 | 0.834097 | 0.624555 | 0.426201 | 0.668385 |
|
105 |
+
| mistralai/Mistral-7B-Instruct-v0.2 | 0.637372 | 0.824444 | 0.846345 | 0.59201 | 0.668116 | 0.713657 |
|
106 |
+
|
107 |
+
|
108 |
+
### Italian
|
109 |
+
|
110 |
+
| | arc_challenge_it | belebele_it | hellaswag_it | mmlu_it | truthfulqa_it | avg |
|
111 |
+
|:-------------------------------------|-------------------:|--------------:|---------------:|----------:|----------------:|---------:|
|
112 |
+
| occiglot/occiglot-7b-eu5 | 0.501283 | 0.652222 | 0.700533 | 0 | 0.252874 | 0.421382 |
|
113 |
+
| occiglot/occiglot-7b-eu5-instruct | 0.516681 | 0.661111 | 0.71326 | 0 | 0.295019 | 0.437214 |
|
114 |
+
| occiglot/occiglot-7b-it-en | 0.536356 | 0.684444 | 0.694768 | 0 | 0.247765 | 0.432667 |
|
115 |
+
| occiglot/occiglot-7b-it-en-instruct | 0.545766 | 0.717778 | 0.713804 | 0 | 0.303959 | 0.456261 |
|
116 |
+
| galatolo/cerbero-7b | 0.522669 | 0.717778 | 0.631567 | 0 | 0.302682 | 0.434939 |
|
117 |
+
| mistralai/Mistral-7B-v0.1 | 0.502139 | 0.734444 | 0.630371 | 0 | 0.264368 | 0.426264 |
|
118 |
+
| mistralai/Mistral-7B-Instruct-v0.2 | 0.519247 | 0.703333 | 0.6394 | 0 | 0.349936 | 0.442383 |
|
119 |
+
|
120 |
+
|
121 |
+
</details>
|
122 |
+
|
123 |
+
## Acknowledgements
|
124 |
+
|
125 |
+
The pre-trained model training was supported by a compute grant at the [42 supercomputer](https://hessian.ai/) which is a central component in the development of [hessian AI](https://hessian.ai/), the [AI Innovation Lab](https://hessian.ai/infrastructure/ai-innovationlab/) (funded by the [Hessian Ministry of Higher Education, Research and the Art (HMWK)](https://wissenschaft.hessen.de) & the [Hessian Ministry of the Interior, for Security and Homeland Security (HMinD)](https://innen.hessen.de)) and the [AI Service Centers](https://hessian.ai/infrastructure/ai-service-centre/) (funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)).
|
126 |
+
The curation of the training data is partially funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)
|
127 |
+
through the project [OpenGPT-X](https://opengpt-x.de/en/) (project no. 68GX21007D).
|
128 |
+
|
129 |
+
|
130 |
+
## License
|
131 |
+
|
132 |
+
[Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html)
|
133 |
+
|
134 |
+
## See also
|
135 |
+
|
136 |
+
- https://huggingface.co/collections/occiglot/occiglot-eu5-7b-v01-65dbed502a6348b052695e01
|
137 |
+
- https://huggingface.co/NikolayKozloff/occiglot-7b-it-en-GGUF
|