--- library_name: transformers base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: biobert-v1.1-finetuned-medmcqa-2024-11-30-T10-40-37 results: [] --- # biobert-v1.1-finetuned-medmcqa-2024-11-30-T10-40-37 This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co./dmis-lab/biobert-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9611 - Accuracy: 0.5735 - F1: 0.5746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000159 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.741 | 0.9993 | 571 | 0.9445 | 0.5420 | 0.5435 | | 0.5108 | 1.9989 | 1142 | 0.9611 | 0.5735 | 0.5746 | | 0.4273 | 2.9985 | 1713 | 1.0719 | 0.5694 | 0.5702 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3