mav23 commited on
Commit
25fc31b
1 Parent(s): 720a373

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,20 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ hermes-2-pro-llama-3-8b.Q2_K.gguf filter=lfs diff=lfs merge=lfs -text
37
+ hermes-2-pro-llama-3-8b.Q3_K.gguf filter=lfs diff=lfs merge=lfs -text
38
+ hermes-2-pro-llama-3-8b.Q3_K_L.gguf filter=lfs diff=lfs merge=lfs -text
39
+ hermes-2-pro-llama-3-8b.Q3_K_M.gguf filter=lfs diff=lfs merge=lfs -text
40
+ hermes-2-pro-llama-3-8b.Q3_K_S.gguf filter=lfs diff=lfs merge=lfs -text
41
+ hermes-2-pro-llama-3-8b.Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
42
+ hermes-2-pro-llama-3-8b.Q4_1.gguf filter=lfs diff=lfs merge=lfs -text
43
+ hermes-2-pro-llama-3-8b.Q4_K.gguf filter=lfs diff=lfs merge=lfs -text
44
+ hermes-2-pro-llama-3-8b.Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
45
+ hermes-2-pro-llama-3-8b.Q4_K_S.gguf filter=lfs diff=lfs merge=lfs -text
46
+ hermes-2-pro-llama-3-8b.Q5_0.gguf filter=lfs diff=lfs merge=lfs -text
47
+ hermes-2-pro-llama-3-8b.Q5_1.gguf filter=lfs diff=lfs merge=lfs -text
48
+ hermes-2-pro-llama-3-8b.Q5_K.gguf filter=lfs diff=lfs merge=lfs -text
49
+ hermes-2-pro-llama-3-8b.Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
50
+ hermes-2-pro-llama-3-8b.Q5_K_S.gguf filter=lfs diff=lfs merge=lfs -text
51
+ hermes-2-pro-llama-3-8b.Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
52
+ hermes-2-pro-llama-3-8b.Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: NousResearch/Meta-Llama-3-8B
3
+ tags:
4
+ - Llama-3
5
+ - instruct
6
+ - finetune
7
+ - chatml
8
+ - DPO
9
+ - RLHF
10
+ - gpt4
11
+ - synthetic data
12
+ - distillation
13
+ - function calling
14
+ - json mode
15
+ - axolotl
16
+ model-index:
17
+ - name: Hermes-2-Pro-Llama-3-8B
18
+ results: []
19
+ language:
20
+ - en
21
+ datasets:
22
+ - teknium/OpenHermes-2.5
23
+ widget:
24
+ - example_title: Hermes 2 Pro
25
+ messages:
26
+ - role: system
27
+ content: >-
28
+ You are a sentient, superintelligent artificial general intelligence, here
29
+ to teach and assist me.
30
+ - role: user
31
+ content: >-
32
+ Write a short story about Goku discovering kirby has teamed up with Majin
33
+ Buu to destroy the world.
34
+ license: llama3
35
+ ---
36
+
37
+ # Hermes 2 Pro - Llama-3 8B
38
+
39
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ggO2sBDJ8Bhc6w-zwTx5j.png)
40
+
41
+ ## Model Description
42
+
43
+ Hermes 2 Pro is an upgraded, retrained version of Nous Hermes 2, consisting of an updated and cleaned version of the OpenHermes 2.5 Dataset, as well as a newly introduced Function Calling and JSON Mode dataset developed in-house.
44
+
45
+ This new version of Hermes maintains its excellent general task and conversation capabilities - but also excels at Function Calling, JSON Structured Outputs, and has improved on several other metrics as well, scoring a 90% on our function calling evaluation built in partnership with Fireworks.AI, and an 84% on our structured JSON Output evaluation.
46
+
47
+ Hermes Pro takes advantage of a special system prompt and multi-turn function calling structure with a new chatml role in order to make function calling reliable and easy to parse. Learn more about prompting below.
48
+
49
+ This version of Hermes 2 Pro adds several tokens to assist with agentic capabilities in parsing while streaming tokens - `<tools>`, `<tool_call>`, `<tool_response>` and their closing tags are single tokens now.
50
+
51
+ This work was a collaboration between Nous Research, @interstellarninja, and Fireworks.AI
52
+
53
+ Learn more about the function calling system for this model on our github repo here: https://github.com/NousResearch/Hermes-Function-Calling
54
+
55
+ ## Example Outputs
56
+
57
+ ### Ask for a structured JSON output:
58
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ll2j2wkQffCsiSwUjfRUq.png)
59
+
60
+ ### Write the plot for a story where anime became real life:
61
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/h_7aXGXdm2p2ONYuDF4Ii.png)
62
+
63
+ ### Coding Assistance
64
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/bBd0hyAb8w5rKUiN2w1I6.png)
65
+
66
+ # Prompt Format
67
+
68
+ Hermes 2 Pro uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue.
69
+
70
+ System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model.
71
+
72
+ This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns.
73
+
74
+ This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI.
75
+
76
+ Prompt with system instruction (Use whatever system prompt you like, this is just an example!):
77
+ ```
78
+ <|im_start|>system
79
+ You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|>
80
+ <|im_start|>user
81
+ Hello, who are you?<|im_end|>
82
+ <|im_start|>assistant
83
+ Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|>
84
+ ```
85
+
86
+ This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
87
+ `tokenizer.apply_chat_template()` method:
88
+
89
+ ```python
90
+ messages = [
91
+ {"role": "system", "content": "You are Hermes 2."},
92
+ {"role": "user", "content": "Hello, who are you?"}
93
+ ]
94
+ gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
95
+ model.generate(**gen_input)
96
+ ```
97
+
98
+ When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure
99
+ that the model continues with an assistant response.
100
+
101
+ To utilize the prompt format without a system prompt, simply leave the line out.
102
+
103
+ ## Prompt Format for Function Calling
104
+
105
+ Our model was trained on specific system prompts and structures for Function Calling. These are handled by the `tool_use` chat template. To use this template,
106
+ first define a list of tool functions. It's okay if these are dummy functions - what matters is their name, type hints, and docstring, as these will be
107
+ extracted and made available to the model:
108
+
109
+ ```python
110
+ def get_current_temperature(location: str, unit: str) -> float:
111
+ """
112
+ Get the current temperature at a location.
113
+
114
+ Args:
115
+ location: The location to get the temperature for, in the format "City, Country"
116
+ unit: The unit to return the temperature in. (choices: ["celsius", "fahrenheit"])
117
+ Returns:
118
+ The current temperature at the specified location in the specified units, as a float.
119
+ """
120
+ return 22. # A real function should probably actually get the temperature!
121
+
122
+ def get_current_wind_speed(location: str) -> float:
123
+ """
124
+ Get the current wind speed in km/h at a given location.
125
+
126
+ Args:
127
+ location: The location to get the temperature for, in the format "City, Country"
128
+ Returns:
129
+ The current wind speed at the given location in km/h, as a float.
130
+ """
131
+ return 6. # A real function should probably actually get the wind speed!
132
+
133
+ tools = [get_current_temperature, get_current_wind_speed]
134
+ ```
135
+
136
+ Now, prepare a chat and apply the chat template, then generate the model's response
137
+
138
+ ```python
139
+ messages = [
140
+ {"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
141
+ ]
142
+
143
+ inputs = tokenizer.apply_chat_template(messages, chat_template="tool_use", tools=tools, add_generation_prompt=True, return_dict=True, return_tensors="pt")
144
+ inputs = {k: v.to(model.device) for k, v in inputs.items()}
145
+ out = model.generate(**inputs, max_new_tokens=128)
146
+ print(tokenizer.decode(out[0][len(inputs["input_ids"][0]):]))
147
+ ```
148
+
149
+ The model will then generate a tool call, which your inference code must parse, and plug into a function (see example inference code here: https://github.com/NousResearch/Hermes-Function-Calling):
150
+
151
+ ```
152
+ <tool_call>
153
+ {"arguments": {"location": "Paris, France", "unit": "celsius"}, "name": "get_current_temperature"}
154
+ </tool_call><|im_end|>
155
+ ```
156
+
157
+ Once you parse the tool call, add it to the chat as an `assistant` response, using the `tool_calls` key, then append the tool output
158
+ as a response with the `tool` role:
159
+
160
+ ```python
161
+ tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France", "unit": "celsius"}}
162
+ messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
163
+ messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
164
+ ```
165
+
166
+ Now you can apply the chat template again to format the conversation, and generate a response from the model:
167
+
168
+ ```python
169
+ inputs = tokenizer.apply_chat_template(messages, chat_template="tool_use", tools=tools, add_generation_prompt=True, return_dict=True, return_tensors="pt")
170
+ inputs = {k: v.to(model.device) for k, v in inputs.items()}
171
+ out = model.generate(**inputs, max_new_tokens=128)
172
+ print(tokenizer.decode(out[0][len(inputs["input_ids"][0]):]))
173
+ ```
174
+
175
+ and we get:
176
+
177
+ ```
178
+ The current temperature in Paris, France is 22.0 degrees Celsius.<|im_end|>
179
+ ```
180
+
181
+ ## Prompt Format for JSON Mode / Structured Outputs
182
+
183
+ Our model was also trained on a specific system prompt for Structured Outputs, which should respond with **only** a json object response, in a specific json schema.
184
+
185
+ Your schema can be made from a pydantic object using our codebase, with the standalone script `jsonmode.py` available here: https://github.com/NousResearch/Hermes-Function-Calling/tree/main
186
+
187
+ ```
188
+ <|im_start|>system
189
+ You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:\n<schema>\n{schema}\n</schema><|im_end|>
190
+ ```
191
+
192
+ Given the {schema} that you provide, it should follow the format of that json to create it's response, all you have to do is give a typical user prompt, and it will respond in JSON.
193
+
194
+
195
+ # Benchmarks
196
+
197
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/vOYv9wJUMn1Xrf4BvmO_x.png)
198
+
199
+ ## GPT4All:
200
+ ```
201
+ | Task |Version| Metric |Value | |Stderr|
202
+ |-------------|------:|--------|-----:|---|-----:|
203
+ |arc_challenge| 0|acc |0.5520|± |0.0145|
204
+ | | |acc_norm|0.5887|± |0.0144|
205
+ |arc_easy | 0|acc |0.8350|± |0.0076|
206
+ | | |acc_norm|0.8123|± |0.0080|
207
+ |boolq | 1|acc |0.8584|± |0.0061|
208
+ |hellaswag | 0|acc |0.6265|± |0.0048|
209
+ | | |acc_norm|0.8053|± |0.0040|
210
+ |openbookqa | 0|acc |0.3800|± |0.0217|
211
+ | | |acc_norm|0.4580|± |0.0223|
212
+ |piqa | 0|acc |0.8003|± |0.0093|
213
+ | | |acc_norm|0.8118|± |0.0091|
214
+ |winogrande | 0|acc |0.7490|± |0.0122|
215
+ ```
216
+ Average: 72.62
217
+
218
+ ## AGIEval:
219
+ ```
220
+ | Task |Version| Metric |Value | |Stderr|
221
+ |------------------------------|------:|--------|-----:|---|-----:|
222
+ |agieval_aqua_rat | 0|acc |0.2520|± |0.0273|
223
+ | | |acc_norm|0.2559|± |0.0274|
224
+ |agieval_logiqa_en | 0|acc |0.3548|± |0.0188|
225
+ | | |acc_norm|0.3625|± |0.0189|
226
+ |agieval_lsat_ar | 0|acc |0.1826|± |0.0255|
227
+ | | |acc_norm|0.1913|± |0.0260|
228
+ |agieval_lsat_lr | 0|acc |0.5510|± |0.0220|
229
+ | | |acc_norm|0.5255|± |0.0221|
230
+ |agieval_lsat_rc | 0|acc |0.6431|± |0.0293|
231
+ | | |acc_norm|0.6097|± |0.0298|
232
+ |agieval_sat_en | 0|acc |0.7330|± |0.0309|
233
+ | | |acc_norm|0.7039|± |0.0319|
234
+ |agieval_sat_en_without_passage| 0|acc |0.4029|± |0.0343|
235
+ | | |acc_norm|0.3689|± |0.0337|
236
+ |agieval_sat_math | 0|acc |0.3909|± |0.0330|
237
+ | | |acc_norm|0.3773|± |0.0328|
238
+ ```
239
+ Average: 42.44
240
+
241
+ ## BigBench:
242
+ ```
243
+ | Task |Version| Metric |Value | |Stderr|
244
+ |------------------------------------------------|------:|---------------------|-----:|---|-----:|
245
+ |bigbench_causal_judgement | 0|multiple_choice_grade|0.5737|± |0.0360|
246
+ |bigbench_date_understanding | 0|multiple_choice_grade|0.6667|± |0.0246|
247
+ |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.3178|± |0.0290|
248
+ |bigbench_geometric_shapes | 0|multiple_choice_grade|0.1755|± |0.0201|
249
+ | | |exact_str_match |0.0000|± |0.0000|
250
+ |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.3120|± |0.0207|
251
+ |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2014|± |0.0152|
252
+ |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.5500|± |0.0288|
253
+ |bigbench_movie_recommendation | 0|multiple_choice_grade|0.4300|± |0.0222|
254
+ |bigbench_navigate | 0|multiple_choice_grade|0.4980|± |0.0158|
255
+ |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.7010|± |0.0102|
256
+ |bigbench_ruin_names | 0|multiple_choice_grade|0.4688|± |0.0236|
257
+ |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.1974|± |0.0126|
258
+ |bigbench_snarks | 0|multiple_choice_grade|0.7403|± |0.0327|
259
+ |bigbench_sports_understanding | 0|multiple_choice_grade|0.5426|± |0.0159|
260
+ |bigbench_temporal_sequences | 0|multiple_choice_grade|0.5320|± |0.0158|
261
+ |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2280|± |0.0119|
262
+ |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1531|± |0.0086|
263
+ |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.5500|± |0.0288|
264
+ ```
265
+ Average: 43.55
266
+
267
+ ## TruthfulQA:
268
+ ```
269
+ | Task |Version|Metric|Value| |Stderr|
270
+ |-------------|------:|------|----:|---|-----:|
271
+ |truthfulqa_mc| 1|mc1 |0.410|± |0.0172|
272
+ | | |mc2 |0.578|± |0.0157|
273
+ ```
274
+
275
+
276
+ # Inference Code
277
+
278
+ Here is example code using HuggingFace Transformers to inference the model (note: in 4bit, it will require around 5GB of VRAM)
279
+
280
+ Note: To use function calling, you should see the github repo above.
281
+
282
+ ```python
283
+ # Code to inference Hermes with HF Transformers
284
+ # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages
285
+
286
+ import torch
287
+ from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM
288
+ import bitsandbytes, flash_attn
289
+
290
+ tokenizer = AutoTokenizer.from_pretrained('NousResearch/Hermes-2-Pro-Llama-3-8B', trust_remote_code=True)
291
+ model = LlamaForCausalLM.from_pretrained(
292
+ "NousResearch/Hermes-2-Pro-Llama-3-8B",
293
+ torch_dtype=torch.float16,
294
+ device_map="auto",
295
+ load_in_8bit=False,
296
+ load_in_4bit=True,
297
+ use_flash_attention_2=True
298
+ )
299
+
300
+ prompts = [
301
+ """<|im_start|>system
302
+ You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|>
303
+ <|im_start|>user
304
+ Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|>
305
+ <|im_start|>assistant""",
306
+ ]
307
+
308
+ for chat in prompts:
309
+ print(chat)
310
+ input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
311
+ generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
312
+ response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
313
+ print(f"Response: {response}")
314
+ ```
315
+
316
+
317
+ ## Inference Code for Function Calling:
318
+
319
+ All code for utilizing, parsing, and building function calling templates is available on our github:
320
+ [https://github.com/NousResearch/Hermes-Function-Calling](https://github.com/NousResearch/Hermes-Function-Calling)
321
+
322
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/oi4CiGh50xmoviUQnh8R3.png)
323
+
324
+ # Chat Interfaces
325
+
326
+ When quantized versions of the model are released, I recommend using LM Studio for chatting with Hermes 2 Pro. It does not support function calling - for that use our github repo. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box.
327
+ In LM-Studio, simply select the ChatML Prefix on the settings side pane:
328
+
329
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png)
330
+
331
+
332
+ ## Quantized Versions:
333
+
334
+ GGUF Versions Available Here: https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B-GGUF
335
+
336
+ # How to cite:
337
+
338
+ ```bibtext
339
+ @misc{Hermes-2-Pro-Llama-3-8B,
340
+ url={[https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B]https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B)},
341
+ title={Hermes-2-Pro-Llama-3-8B},
342
+ author={"Teknium", "interstellarninja", "theemozilla", "karan4d", "huemin_art"}
343
+ }
344
+ ```
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./hermes-2-pro-llama-3-8b-DPO",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 128000,
9
+ "eos_token_id": 128003,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 14336,
14
+ "max_position_embeddings": 8192,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 32,
18
+ "num_key_value_heads": 8,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "rope_theta": 500000.0,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "float16",
25
+ "transformers_version": "4.40.1",
26
+ "use_cache": true,
27
+ "vocab_size": 128288
28
+ }
hermes-2-pro-llama-3-8b.Q2_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85c53927743ce004c3f2b05650b7d15ccc5e800e25a55f4563ec58b2df34bfec
3
+ size 3179288064
hermes-2-pro-llama-3-8b.Q3_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56bcbd4af265d50ee4ad206292985370581398aae4a39ec3bfe396a7a1266c56
3
+ size 4019087872
hermes-2-pro-llama-3-8b.Q3_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36c9900a5c913c23ef8a8f6bc12cf4d0a2700cb00e0702dd137405f12a6bc92c
3
+ size 4322126336
hermes-2-pro-llama-3-8b.Q3_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56bcbd4af265d50ee4ad206292985370581398aae4a39ec3bfe396a7a1266c56
3
+ size 4019087872
hermes-2-pro-llama-3-8b.Q3_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f9db35381c9970fbb9119a6d169b07b8adcc2c76f33c65a17c6eba3747c62ff
3
+ size 3664669184
hermes-2-pro-llama-3-8b.Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e89e888a284620e2d780c8c867e073cc36392fc2b79644d23f73395e6e16c3d
3
+ size 4661399040
hermes-2-pro-llama-3-8b.Q4_1.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8362eab103552bc5872672ef88ff4ad5111a0e8f9e40a70dc6eb8bd5ff7d2e47
3
+ size 5130448384
hermes-2-pro-llama-3-8b.Q4_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95dcc56823ef7c3f52540a76c324313c0a59a8d9d4002a887390ebb26fa4dbba
3
+ size 4920921600
hermes-2-pro-llama-3-8b.Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95dcc56823ef7c3f52540a76c324313c0a59a8d9d4002a887390ebb26fa4dbba
3
+ size 4920921600
hermes-2-pro-llama-3-8b.Q4_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8be6213f88aa355d59f59a985494371a896ce2935584d82d0b6d83f6c17c65e7
3
+ size 4692856320
hermes-2-pro-llama-3-8b.Q5_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a02b19d36bae47165e2cc07418dd90107a0c72b1028981e34c6a6551f3fc333
3
+ size 5599497728
hermes-2-pro-llama-3-8b.Q5_1.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7880615ff575a693ecb06cb32a3230a5cc162e07e56746faa25598c37140dc38
3
+ size 6068547072
hermes-2-pro-llama-3-8b.Q5_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3058d6273e1c70be9ab85a418544536c474405114c02735d9e08cc7d1494e89
3
+ size 5733191168
hermes-2-pro-llama-3-8b.Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3058d6273e1c70be9ab85a418544536c474405114c02735d9e08cc7d1494e89
3
+ size 5733191168
hermes-2-pro-llama-3-8b.Q5_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad73f623c787d9cda5be274efb379f3ccf64b8710b25fb6b705aa4b414a96145
3
+ size 5599497728
hermes-2-pro-llama-3-8b.Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34d73c6a97696c2b83344378f4d4ca43c0543d59e8472741602bfbdc85ea5a5e
3
+ size 6596227584
hermes-2-pro-llama-3-8b.Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff776b9070e9de4d438de2285d9f53b7f30c379fd6d650241ccf6d11af05cfc5
3
+ size 8541055488