--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.89 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co./MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3030 - Accuracy: 0.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9203 | 1.0 | 112 | 0.6901 | 0.82 | | 0.2906 | 1.99 | 224 | 0.4069 | 0.86 | | 0.3416 | 3.0 | 337 | 0.3651 | 0.84 | | 0.2143 | 4.0 | 449 | 0.3208 | 0.89 | | 0.0052 | 4.99 | 561 | 0.3180 | 0.88 | | 0.0037 | 6.0 | 674 | 0.3233 | 0.88 | | 0.0011 | 6.99 | 786 | 0.2975 | 0.9 | | 0.0011 | 8.0 | 899 | 0.3200 | 0.88 | | 0.0325 | 9.0 | 1011 | 0.3028 | 0.89 | | 0.0008 | 9.97 | 1120 | 0.3030 | 0.89 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2