--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer datasets: - squad model-index: - name: albertbase-qa results: [] --- # albertbase-qa This model is a fine-tuned version of [albert-base-v2](https://huggingface.co./albert-base-v2) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.0115 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.897 | 1.0 | 4380 | 0.9106 | | 0.671 | 2.0 | 8760 | 0.8892 | | 0.476 | 3.0 | 13140 | 1.0115 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1